Skip to main content
Log in

Robust depth position tracking control of an AUV using \(H_{\infty }\) synthesis

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

This paper addresses the tracking control for the diving motion of an autonomous underwater vehicle (AUV). The primary control objective is to effectively track the desired depth position, in the presence of parametric uncertainties, underwater disturbances, and input delays. A third-order linearized model is employed to describe the dynamics of the diving system. This dynamic system comprises an inner pitch control loop and an outer depth control loop, each intended for independent control. In order to achieve this, a cascade control structure is adopted for control synthesis. In this context, \(H_{\infty }\) control law for the inner pitch control loop and a proportional (P) control law for the outer depth control loop are proposed, aiming to attain the specified control objectives. The robustness of the control design accounts for parametric uncertainties within the nominal model, input delays, and external disturbances, such as ocean currents. The closed-loop stability of the proposed controller is verified, and closed-loop performance is evaluated through a series of various simulation studies. To maintain practical relevance, we used the experimentally validated parameters of AUV REMUS 100 in the simulation model. The performance of the proposed control scheme is compared with two benchmark control scheme, namely proportional-derivative plus proportional (\(PD+P\)) and \(H_{2}\) control. The comparison considers parametric uncertainties, underwater disturbances, and input delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Sahoo, S.K. Dwivedy, P.S. Robi, Advancements in the field of autonomous underwater vehicle. Ocean Eng. 181, 145–160 (2019). https://doi.org/10.1016/j.oceaneng.2019.04.011

    Article  Google Scholar 

  2. T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons Ltd (2011)

  3. K.M. Zhou, Essentials of Robust Control (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  4. A. Sinha, Linear Systems: Optimal and Robust Control (CRC Press, Boca Raton, 2016)

    Google Scholar 

  5. U. Mackenroth, Robust Control System Theory and Case Studies (Springer-Verlag, London, 2004)

    Book  Google Scholar 

  6. W.S. Levine, R.T. Reichert, An introduction to \(H_{\infty }\) control system design. 29th IEEE Conference on Decision and Control 6:2966–2974 (1990). https://doi.org/10.1109/CDC.1990.203329

  7. J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to standard \(H_{2}\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989). https://doi.org/10.1109/9.29425

    Article  Google Scholar 

  8. J.C. Doyle, Structured uncertainty in control system design. Proceedings of the 24th IEEE Conference on Decision and Control pp. 260-265 (1985). https://doi.org/10.1109/CDC.1985.268842

  9. D.W. Gu, P.H. Petkov, M.M. Konstantinov, Robust Control Design with MATLAB (Springer-Verlag, London, 2005)

    Google Scholar 

  10. C. Scherer, The riccati inequality and state-space \(H_{\infty }\)-optimal control. Ph.D. Dissertation, Universitat Wurzburg, Germany (1990)

  11. C. Xu, C. Su, Dynamic observer-based \(H_{\infty }\) robust control for a ducted coaxial-rotor UAV. IET Control Theory Appl. 16, 1165–1181 (2022). https://doi.org/10.1049/cth2.12248

    Article  MathSciNet  Google Scholar 

  12. S. Tan, J. Yang, A. Khajepour et al., H-Infinity shifting control in a dual-speed transmission for electric vehicle. Int. J. Autom. Technol. 22, 155–164 (2021). https://doi.org/10.1007/s12239-021-0016-4

    Article  Google Scholar 

  13. J.A. Prakosa, A. Gusrialdi, E. Kurniawan, E. et al. Experimentally robustness improvement of DC motor speed control optimization by H-infinity of mixed-sensitivity synthesis, Int. J. Dynam. Control (2022). https://doi.org/10.1007/s40435-022-00956-y

  14. M. Chen, S. An, K. Peng, and H. Sun, Fixed-time bounded H-infinity tracking control of a single-joint manipulator system with input saturation. Int. J. Control (2022). https://doi.org/10.1080/00207179.2022.2091478

  15. A. Khalil, N. Fezans, A multi-channel \(H_{\infty }\) preview control approach to load alleviation design for flexible aircraft. CEAS Aeronaut. J. 12, 401–412 (2021). https://doi.org/10.1007/s13272-021-00503-z

    Article  Google Scholar 

  16. M.S. Jouda, N. Kahraman, Improved optimal control of transient power sharing in microgrid using H-Infinity controller with artificial bee colony algorithm. Energies 15(3), 1043 (2022). https://doi.org/10.3390/en15031043

    Article  Google Scholar 

  17. Y. Huang, Z. Liu, W. Huang, S. Chen, Robust \(H_\infty\) control for non- linear course system of unmanned surface vessel with polytopic uncertainty based on sum of squares. Trans. Inst. Meas. Control. 43(2), 390–399 (2021). https://doi.org/10.1177/0142331220957750

    Article  Google Scholar 

  18. I. Kaminer, A.M. Pascoal, C.J. Silvestre, P.P. Khargonekar, Control of an underwater vehicle using \(H_{\infty }\) / synthesis. In: Proceedings of the 30th IEEE Conference on Decision and Control 3:2350–2355 (1991). https://doi.org/10.1109/CDC.1991.261601

  19. R.P. Desai, N.S. Manjarekar, Norm-based robust pitch channel control of an autonomous underwater vehicle. IFAC-PapersOnLine 54(16), 258–265 (2021). https://doi.org/10.1016/j.ifacol.2021.10.102

    Article  Google Scholar 

  20. R.P. Desai, N.S. Manjarekar, Robust controller design for AUV subsystem using \(\mu\) synthesis. IFAC PapersOnLine 55(25), 211–216 (2022). https://doi.org/10.1016/j.ifacol.2022.09.349

    Article  Google Scholar 

  21. C. Silvestre, A. Pascoal, Control of an AUV in the vertical and horizontal planes: system design and tests at sea. Trans. Inst. Meas. Control. 19(3), 126–138 (1997). https://doi.org/10.1177/014233129701900303

    Article  Google Scholar 

  22. L. Moreira, C.G. Soares, \(H_{2}\) and \(H_{\infty }\) Designs for diving and course control of an autonomous underwater vehicle in presence of waves. IEEE J. Oceanic Eng. 33(2), 69–88 (2008). https://doi.org/10.1109/JOE.2008.918689

    Article  Google Scholar 

  23. J. Petrich, D.J. Stilwell, Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling. Ocean Eng. 38(1), 197–204 (2011). https://doi.org/10.1016/j.oceaneng.2010.10.007

    Article  Google Scholar 

  24. L.L. Wang, H.J. Wang, L.X. Pan, \(H_{\infty }\) control for path tracking of autonomous underwater vehicle motion. Adv. Mech. Eng. (2015). https://doi.org/10.1177/1687814015582083

    Article  Google Scholar 

  25. W. Zhang, Y. Teng, S. Wei, H. Xiong, H. Ren, The robust H-infinity control of UUV with Riccati equation solution interpolation. Ocean Eng. 156, 252–262 (2018). https://doi.org/10.1016/j.oceaneng.2018.02.004

    Article  Google Scholar 

  26. S.M. Wang, M.C. Fang, C.N. Hwang, Vertical obstacle avoidance and navigation of autonomous underwater vehicles with \(H_{\infty }\) controller and the artificial potential field method. J. Navig. 72(1), 207–228 (2019). https://doi.org/10.1017/S0373463318000589

    Article  Google Scholar 

  27. E.A. Gavrilina, V.N. Chestnov, Synthesis of an attitude control system for unmanned underwater vehicle using \(H_{\infty }\) approach. IFAC-PapersOnLine 53(2), 14642–14649 (2020). https://doi.org/10.1016/j.ifacol.2020.12.1474

    Article  Google Scholar 

  28. P.D.H. Bui, S.S. You, H.S. Kim, S.D. Lee, Dynamics modeling and motion control for high-speed underwater vehicles using \(H_{\infty }\) synthesis with anti-windup compensator. J. Ocean Eng. Sci. 7(1), 84–91 (2022). https://doi.org/10.1016/j.joes.2021.07.002

    Article  Google Scholar 

  29. Y. Batmani, S. Najafi, Event-triggered \(H_{\infty }\) depth control of remotely operated underwater vehicles. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1224–1232 (2021). https://doi.org/10.1109/TSMC.2019.2896382

    Article  Google Scholar 

  30. S. Mahapatra, B. Subudhi, Nonlinear \(H_{\infty }\) state and output feedback control schemes for an autonomous underwater vehicle in the dive plane. Trans. Inst. Meas. Control. 40(6), 2024–2038 (2018). https://doi.org/10.1177/0142331217695671

    Article  Google Scholar 

  31. S. Gibson, Improved dynamic modeling and robust control of autonomous underwater vehicles. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2018)

  32. S. Varrier, Robust control of autonomous underwater vehicles (Project Report, Rhone-Alpes and Gipsa-Lab, INRIA, 2010), p.2010

  33. S.S. Nerkar, P.S. Londhe, B.M. Patre, Design of super twisting disturbance observer based control for autonomous underwater vehicle. Int. J. Dyn. Control 10, 306–322 (2022). https://doi.org/10.1007/s40435-021-00797-1

    Article  Google Scholar 

  34. G.V. Lakhekar, L.M. Waghmare, P.G. Jadhav, R.G. Roy, Robust diving motion control of an autonomous underwater vehicle using adaptive neuro-fuzzy sliding mode technique. IEEE Access 8, 109891–109904 (2020). https://doi.org/10.1109/ACCESS.2020.3001631

    Article  Google Scholar 

  35. P.S. Londhe, D.D. Dhadekar, B.M. Patre, L.M. Waghmare, Uncertainty and disturbance estimator based sliding mode control of an autonomous underwater vehicle. Int. J. Dyn. Control 5, 1122–1138 (2017). https://doi.org/10.1007/s40435-016-0260-z

    Article  MathSciNet  Google Scholar 

  36. P. Sarhadi, A.R. Noei, A. Khosravi, Adaptive integral feedback controller for pitch and yaw channels of an AUV with actuator saturations. ISA Trans. 65, 284–295 (2016). https://doi.org/10.1016/j.isatra.2016.08.002

    Article  Google Scholar 

  37. G.V. Lakhekar, L.M. Waghmare, Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles. J. Mar. Eng. Technol. 22(3), 131–152 (2023)

    Article  Google Scholar 

  38. L. Qiao, S. Ruan, G. Zhang, W. Zhang, Robust \(H_{2}\) optimal depth control of an autonomous underwater vehicle with output disturbances and time delay. Ocean Eng. 165, 399–409 (2018). https://doi.org/10.1016/j.oceaneng.2018.07.019

    Article  Google Scholar 

  39. T. Prestero, Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. M.Sc. Thesis in Ocean and Mechanical Engineering, MIT, US (2001)

  40. Fortuna, L., Frasca, M., Buscarino, A. Optimal and Robust Control: Advanced Topics with MATLAB4 ® (CRC Press, 2021)

  41. R. Yang, Modeling and robust control approach for autonomous underwater vehicles (The University of Western Brittany Brest, Automatic, 2016)

  42. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control Analysis and Design, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar P. Desai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, R.P., Manjarekar, N.S. Robust depth position tracking control of an AUV using \(H_{\infty }\) synthesis. Mar Syst Ocean Technol (2024). https://doi.org/10.1007/s40868-024-00137-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40868-024-00137-w

Keywords

Navigation