Skip to main content
Log in

Computational hydrodynamic optimization of galvanic anode shapes for tunnel thrusters

  • Technical Note
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

We introduce a computational method for designing minimum-drag galvanic anodes for tunnel thrusters, assuming a given maximum anode mold diameter and a given anode weight. The method is illustrated for a tunnel of 1000 mm radius, and the results are evaluated by using Computational Fluid Dynamics (CFD). For a representative 45° tunnel flow, the pressure drop caused by a single anode can be reduced by 92% and the risk of cavitation mitigated relative to a rectangular block anode shape

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A. Sarasquete, A. Juandó, A. Caldas, F. Zapata, 2nd International Ship Design and Naval Engineering Congress (Cartagena de Indias, Colombia, 2011)

    Google Scholar 

  2. Y.K. Demirel, O. Turan, A. Incecik, Appl. Ocean Res. 62, 100 (2017)

    Article  Google Scholar 

  3. D.W. Kim, M. Kim, Int. J. Numer. Meth. Fluids 21(2), 93 (1995)

    Article  Google Scholar 

  4. D.K. Srivastava, J. Fluids Eng. 133, 10 (2011)

    Article  Google Scholar 

  5. A. Berendsen, Marine Painting Manual (Springer, New York, 1989)

    Book  Google Scholar 

  6. R. Jasionowski, D. Przetakiewicz, W. Przetakiewicz, Arch. Metall. Mater. 59, 1–5 (2014)

    Article  Google Scholar 

  7. N. Zamani, J. Porter, A. Mufti, Int. J. Numer. Meth. Eng. 23(7), 1295 (1986)

    Article  Google Scholar 

  8. T. Tezdogan, Y.K. Demirel, Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike 65(2), 49 (2014)

    Google Scholar 

  9. C. Wei, G. Wang, M. Cridland, D.L. Olson, S. Liu, in Handbook of Environmental Degradation of Materials (Third Edition), ed. by M. Kutz, third edition edn. (William Andrew Publishing, 2018), pp. 533–557. https://doi.org/10.1016/B978-0-323-52472-8.00026-5.

  10. Guidance Notes on Cathodic Protection of Ships, vol. 289 (American Bureau of Shipping, 2017)

  11. Y.S. Kim, S. Lee, J.G. Kim, Ocean Eng. 163, 476 (2018)

    Article  Google Scholar 

  12. M.S. Hong, J.G. Kim, Int. J. Electrochem. Sci. 15, 7027 (2020)

    Article  Google Scholar 

  13. M.S. Hong, Y.S. So, J.G. Kim, Materials 12(11), 1761 (2019)

    Article  Google Scholar 

  14. N.P. Utomo, B. Suwasono, A. Munazid, in International Conference on Ship and Offshore Technology (ICSOT) (Royal Institution of Naval Architects, 2014), pp. 105–108

  15. Y. Asmara, J.P. Siregar, C. Tezara, C.T. Ann, in IOP Conference Series: Materials Science and Engineering (2016)

  16. J.H. Kim, Y.S. Kim, Ocean Eng. 115, 149 (2016). https://doi.org/10.1016/j.oceaneng.2016.02.024

    Article  Google Scholar 

  17. D.C. Rennels, H.M. Hudson, Pipe Flow: A Practical and Comprehensive Guide (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  18. C.P. Chukwudozie, Shape optimization for drag minimization using the navier-stokes equation. Master’s thesis, Louisiana State University, USA (2015)

  19. J.S. Parsons, R.E. Goodson, F.R. Goldschmied, J. Hydronaut. 8(3), 100 (1974)

    Article  Google Scholar 

  20. J. Boersma, W. Kamminga, Proc Kon. Ned. Akad. Wet. A 64, 496–507 (1961)

    Google Scholar 

  21. R.H. Byrd, J.C. Gilbert, J. Nocedal, Math. Program. 89(1), 149 (2000)

    Article  MathSciNet  Google Scholar 

  22. E. Immonen, Appl. Math. Model. 41, 508 (2017)

    Article  MathSciNet  Google Scholar 

  23. E. Immonen, Engineering Computations (2018)

  24. ANSYS, Inc., Fluent 2019 R3 Theory Guide

  25. V. Kaushik, S. Ghosh, G. Das, P.K. Das, J. Petrol. Sci. Eng. 86, 153 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their suggestions for improving the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Immonen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Immonen, E., Eriksson, K. & Haavisto, J. Computational hydrodynamic optimization of galvanic anode shapes for tunnel thrusters. Mar Syst Ocean Technol 16, 23–28 (2021). https://doi.org/10.1007/s40868-021-00096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-021-00096-6

Keywords

Navigation