Skip to main content
Log in

The KMS condition for the homoclinic equivalence relation and Gibbs probabilities

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

D. Ruelle considered a general setting where he is able to characterize equilibrium states for Hölder potentials based on properties of conjugating homeomorphism in the so called Smale spaces. On this setting he also shows a relation of KMS states of \(C^*\)-algebras with equilibrium probabilities of Thermodynamic Formalism. A later paper by N. Haydn and D. Ruelle presents a shorter proof of this equivalence. Here we consider similar problems but now on the symbolic space \(\Omega = \{1,2,\ldots ,d\}^{{\mathbb {Z}} - \{ 0 \} }\) and the dynamics will be given by the shift \(\tau \). In the case of potentials depending on a finite coordinates we will present a simplified proof of the equivalence mentioned above which is the main issue of the papers by D. Ruelle and N. Haydn. The class of conjugating homeomorphism is explicit and reduced to a minimal set of conditions. We also present with details (following D. Ruelle) the relation of these probabilities with the KMS dynamical \(C^*\)-state on the \(C^*\)-algebra associated to the groupoid defined by the homoclinic equivalence relation. The topics presented here are not new but we believe the main ideas of the proof of the results by Ruelle and Haydn will be quite transparent in our exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baravieira, A., Leplaideur, R., Lopes, A.O.: Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra. XXIX Coloq. Bras. Mat - IMPA, Rio de Janeiro (2013)

    Google Scholar 

  2. Bissacot, R., Kimura, B.: Gibbs Measures on Multidimensional Sub-shifts. Preprint (2016)

  3. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diemorphisms. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  4. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Castro, G., Lopes, A.O., Mantovani, G.: Haar systems, KMS states on von Neumann algebras and \(C^*\)-algebras on dynamically defined groupoids and Noncommutative Integration. Preprint (2017)

  6. Cioletti, L., Lopes, A.O.: Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete Contin. Dyn. Syst. Ser. A 37(12), 6139–6152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. DellAntonio, G.: Lectures on the Mathematics of Quantum Mechanics II. Atlantis Press, Paris (2016)

    Google Scholar 

  8. Exel, R., Lopes, A.O.: \(C^*\)-algebras, approximately proper equivalence relations and Thermodynamic Formalism. Ergod. Theory Dyn. Syst. 24, 1051–1082 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Exel, R., Lopes, A.O.: C*-algebras and Thermodynamic Formalism. Sao Paulo J. Math. Sci. 2(1), 285–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haydn, N.T.A.: On Gibbs and equilibrium states. Ergod. Theory Dyn. Syst. 7, 119–132 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haydn, N.T.A., Ruelle, D.: Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Commun. Math. Phys. 148, 155–167 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumjian, A., Renault, J.: KMS states on \( C^*\)-algebras associated to expansive maps. Proc. AMS 134(7), 2067–2078 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lopes, A.O., Oliveira, E.: Continuous groupoids on the symbolic space, quasi-invariant probabilities for Haar systems and the Haar–Ruelle operator, to appear in Bull Braz. Math. Soc. (on line 2018)

  14. Putnam, I.: \(C^*\)-algebras from Smale spaces. Can. J. Math. 48(1), 175–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Putnam, I., Spielberg, J.: The structure of \(C^*\)-algebras associated with hyperbolic dynamical systems. J. Funct. Anal. 163(2), 279–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Asterisque, 187–188 (1990). http://www.numdam.org/item/AST_1990__187-188__1_0/

  17. Pedersen, G.K.: \(C^{*}\) Algebras and Their Automorphism Groups. Academic Press, New York (1979)

    MATH  Google Scholar 

  18. Renault, J.: A Groupoid Approach to \(C^*\)-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  19. Renault, J.: \(C^*\)-Algebras and Dynamical Systems. XXVII Coloquio Bras. de Matematica - IMPA, Rio de Janeiro (2009)

    MATH  Google Scholar 

  20. Ruelle, D.: Noncommutative algebras for hyperbolic diffeomorphisms. Invent. Math. 93, 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruelle, D.: Thermodynamic Formalism, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Thomsen, C.K.: \(C^*\)-Algebras of Homoclinic and Heteroclinic Structure in Expansive Dynamics, vol. 206, no. 970. Memoirs of the American Mathematical Society, Providence (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Lopes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.O., Mantovani, G. The KMS condition for the homoclinic equivalence relation and Gibbs probabilities. São Paulo J. Math. Sci. 13, 248–282 (2019). https://doi.org/10.1007/s40863-019-00118-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00118-7

Keywords

Navigation