Skip to main content
Log in

Nickel potentiates soybean resistance against Sclerotinia sclerotiorum infection

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

White mold, caused by the fungus Sclerotinia sclerotiorum, is one of the most destructive diseases on soybean worldwide and deserves attention regarding its management. In this regard, the hypothesis that spraying nickel (Ni) on soybean plants could increase their resistance against white mold, considering its involvement in the catalytic process of several enzymes and as a constituent of many biomolecules, was investigated. The photosynthetic performance (chlorophyll (Chl) a fluorescence parameters and photosynthetic pigments pools (chlorophyll a + b and carotenoids), concentrations of malondialdehyde (MDA), phenolics, and lignin as well as the expression of defense-related genes [phenylalanine ammonia-lyase (PAL1.1, PAL1.3, PAL2.1, and PAL3.1), chitinase (CHIA1), chalcone isomerase (CHI1B1), lipoxygenase (LOX7), metalloproteinase (MMP2), isochorismate synthase (ICS1 and ICS2), urease (URE), pathogenesis-related protein 1 (PR-1A), and nitrate and nitrite reductase (NIR1-1 and INR-2)] were assessed in plants noninoculated or inoculated with S. sclerotiorum and non-sprayed or sprayed with Ni. Mycelial growth of S. sclerotiorum was inhibited by Ni in vitro. White mold severity for Ni-sprayed plants decreased due to higher foliar Ni concentration, less MDA concentration, a great pool of photosynthetic pigments, and a more preserved photosynthetic apparatus compared to plants non-sprayed with Ni. Higher concentrations of phenolics and lignin linked to up-regulation of PAL1.3, PAL2.1, PAL3.1, CHI1B1, and PR-1A genes for Ni-sprayed plants were important to increase their resistance against white mold. These results highlight the potential of Ni for white mold management in the context of more sustainable agriculture that must prize adequate plant mineral nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Ahmed AIS, Yadav DJ, Lee YS (2016) Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. International Journal of Innovative Science, Engineering and Technology 5:7378–7385

    Google Scholar 

  • Andrew M, Barua R, Short SM, Kohn LM (2012) Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS ONE 7:1

    Article  Google Scholar 

  • Aucique-Pérez CE, Rodrigues FA, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149

    Article  Google Scholar 

  • Bae YS, Knudsen GR (2007) Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Applied Soil Ecology 35:21–24

    Article  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiology 140:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AV, Pilbeam DJ (2015) Handbook of Plant Nutrition. CRC Press, 2nd ed, p 773

  • Barcelos JPQ, Reis HPG, Godoy CV (2018) Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology 67:1502–1513

    Article  CAS  Google Scholar 

  • Becker-Ritt AB, Martinelli AHS, Mitidieri S, Feder V, Wassermann GE, Santi L, Vainstein MH, Oliveira JTA, Fiuza LM, Pasquali G, Carlini CR (2007) Antifungal activity of plant and bacterial ureases. Toxicon 50:971–983

    Article  CAS  PubMed  Google Scholar 

  • Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O, Lopez Y, Borrás-Hidalgo O, Bravo-Almonacid FF (2019) Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Science Reports 9:1–13

    CAS  Google Scholar 

  • Boland GJ (1987) Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Disease 71:934–936

    Article  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16:93–108

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiology 85:801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves JAA, Oliveira LM, Silva LC, Silva BN, Dias CS, Rios JA, Rodrigues FA (2021) Physiological and biochemical responses of tomato plants to white mold affected by manganese phosphite. Journal of Phytopathology 169:149–167

    Article  CAS  Google Scholar 

  • Dias CS, Araujo L, Chaves JAA, DaMatta FM, Rodrigues FA (2018) Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum. Plant Physiology and Biochemistry 127:119–128

    Article  CAS  PubMed  Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5) metalloenzyme. Simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahim S, Usha K, Singh B (2011) Pathogenesis-related (PR)-proteins: Chitinase and β-1,3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.). Science Horticulturae 130:847–852

    Article  CAS  Google Scholar 

  • Einhardt AM, Ferreira S, Hawerroth C, Valadares SV, Rodrigues FA (2020a) Nickel potentiates soybean resistance against infection by Phakopsora pachyrhizi. Plant Pathology 69:849–859

    Article  CAS  Google Scholar 

  • Einhardt AM, Ferreira S, Souza GM, Mochko AC, Rodrigues FA (2020b) Cellular oxidative damage and impairment on the photosynthetic apparatus caused by Asian soybean rust on soybeans are alleviated by nickel. Acta Physiologiae Plantarum 42:115

    Article  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral Metabolism-Mineral Nutrition of Plants: Principles and perspectives, 2nd Ed., Saunderland, Massachusetts

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia. Annual Review of Microbiology 41:335–361

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: Structure, function and regulation. Biochimica Et Biophysica Acta - Biomembranes 1465:219–235

    Article  CAS  Google Scholar 

  • Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FA (2015) Defense-related enzymes in soybean resistance to target spot. Journal of Phytopathology 163:731–742

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2009) Nickel-induced changes in nitrogen metabolism in wheat shoots. Journal of Plant Physiology 166:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Gerendás J (1999) Significance of nickel for plant growth and metabolism. Journal of Plant Nutrition and Soil Science 162:241–256

    Article  Google Scholar 

  • Harasim P, Filipek T (2015) Nickel in the environment. Journal of Elements 20:525–534

    Google Scholar 

  • Heffer-Link V, Johnson KB (2007) White mold: the plant health instructor. http://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/WhiteMold.aspx. Accessed 01 June 2023

  • Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S (2015) Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. PLoS ONE 10:1–19

    Google Scholar 

  • Kim HS, Diers BW (2000) Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Science 40:55–61

    Article  Google Scholar 

  • Kim YJ, Hwang BK (2000) Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiologiae Plantarum 108:51–60

    CAS  Google Scholar 

  • Liang X, Liberti D, Li M, Kim YT, Hutchens A, Wilson R, Rollins JA (2015) Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. Molecular Plant Pathology 6:559–571

    Article  Google Scholar 

  • Liang YS, Ermawati N, Cha JY, Jung MH, Su’udi M, Kim MG, Ha SH, Park CG, Son D (2010) Overexpression of an AP2/ERF-type transcription factor CRF5 confers pathogen resistance to Arabidopsis plants. Journal of the Korean Sociecty for Applied Biological Chemistry 53:142–148

    Article  CAS  Google Scholar 

  • Liu Z, Ivanoff A, Klominek J (2001) Expression and activity of matrix metalloproteases in human malignant mesothelioma cell lines. International Journal of Cancer 91:638–643

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological Plant Pathology 22:339–345

    Article  CAS  Google Scholar 

  • Masood A, Saeed S, Mahmood A, Malik AS, Labar NH (2012) Role of nutrients in management of mango sudden death disease in Punjab, Pakistan. Pakistan Journal of Zoology 44:675–683

    CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell 8:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MC, Mazaro SM, Godoy CV (2022) Controle biológico de mofo-branco na cultura da soja. In: Meyer MC, Bueno AF, Mazaro SM, Silva JC (eds.) Bioinsumos na Cultura da Soja. EMBRAPA. p 315–329

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moore KJ, Dixon PM (2015) Analysis of combined experiments revisited. Agronomy Journal 107:763–771

    Article  Google Scholar 

  • Mortel M, Recknor JC, Graham MA, Nettleton D, Dittman JD, Nelson RT, Godoy CV, Abdelnoor RV, Almeida AMR, Baum TJ, Whitham SA (2007) Distinct biophasic mRNA changes in response to Asian soybean rust infection. Molecular Plant-Microbe Interaction 20:887–899

    Article  Google Scholar 

  • Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA, Pedersen WL (2002) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Disease 86:26–31

    Article  CAS  PubMed  Google Scholar 

  • Novaes MIC, Debona D, Fagundes-Nacarath IRF, Brás VV, Rodrigues FA (2019) Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam. Acta Physiologiae Plantarum 41:186

    Article  Google Scholar 

  • Nugroho LH, Verberne MC, Verpoorte R (2002) Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiology and Biochemistry 40:755–760

    Article  CAS  Google Scholar 

  • Ojeda-Barrios DL, Sánchez-Chávez E, Sida-Arreola JP, Valdez-Cepeda R, Balandran-Valladares M (2016) The impact of foliar nickel fertilization on urease activity in pecan trees. Journal of Soil Science and Plant Nutrition 16:237–247

    CAS  Google Scholar 

  • Oliveira LM, Araujo MUP, Silva BN, Chaves JAA, Pinto LFCC, Silveira PR, Ribeiro DM, Rodrigues FA (2022) Maize resistance to northern corn leaf blight is potentiated by nickel. Plant Pathology 71:262–278

    Article  CAS  Google Scholar 

  • Pérez-Bueno ML, Pineda M, Barón M (2019) Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science 10:1–15

    Article  Google Scholar 

  • Petruzzelli L, Kunz C, Waldvogel R, Meins R Jr, Leubner-Metzger G (1999) Distinct ethylene- and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta 209:195–201

    Article  CAS  PubMed  Google Scholar 

  • Picanço BBM, Ferreira S, Fontes BA, Oliveira LM, Silva BN, Einhardt AM, Rodrigues FA (2021) Soybean resistance to Phakopsora pachyrhizi infection is barely by boron. Physiological and Molecular Plant Phatology 115:101668

    Article  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and Molecular Features Plant Physiology 130:15–21

    CAS  PubMed  Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Rolfe SA, Scholes JD (2010) Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma 247:163–175

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi M, Dehghan S, Fischer R, Wenzel U, Vilcinskas A, Kavousi HR, Rahnamaeian M (2013) Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius. Plant Signal Behavior 8:37–41

    Article  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology 67:1051–1055

    Article  CAS  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum 153:284–298

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, Thakur A (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob Challenges 1:1700041

    Article  Google Scholar 

  • Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist 212:627–636

    Article  CAS  PubMed  Google Scholar 

  • Silveira PR, Milagres PO, Corrêa EF, Aucique-Pérez CE, WordellFilho JA, Rodrigues FA (2019) Changes in leaf gas exchange, chlorophyll a fluorescence, and antioxidant metabolism within maize leaves infected by Exserohilum turcicum. Biologia Plantarum 63:643–653

    Article  CAS  Google Scholar 

  • Silveira PR, Nascimento KJT, Andrade CCL, Bispo WMS, Oliveira JR, Rodrigues FA (2015) Physiological changes in tomato leaves arising from Xanthomonas gardneri infection. Physiological and Molecular Plant Pathology 92:130–138

    Article  CAS  Google Scholar 

  • Slusarenko AJ (1996) The role of lipoxygenase in plant resistance to infection. Lipoxygenase and lipoxygenase pathway enzymes. BMC Plant Biology 8:113

  • Smith NG, Woodburn J (1984) Nickel and ethylene involvement in the senescence of leaves and flowers. Naturwissenschaften 71:210–211

    Article  CAS  Google Scholar 

  • Tomás-Barberán F, Iniesta-Sanmartin E, Tomás-Lorente F, Rumbero A (1990) Antimicrobial phenolic compounds from three Spanish Helichrysum species. Phytochemistry 29:1093–1095

    Article  Google Scholar 

  • Wiebke-Strohm B, Pasquali G, Margis-Pinheiro M, Bencke M, Bucker-Neto L, Becker-Ritt AB, Martinelli AHS, Rechenmacher C, Polacco JC, Stolf R, Marcelino FC, Abdelnoor RV, Homrich MS, Del-Ponte EM, Carlini CR, Carvalho MCCG, Bodanese-Zanettini MH (2012) Ubiquitous urease affects soybean susceptibility to fungi. Plant Molecular Biology 79:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Science 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Wood BW, Reilly CC (2007) Nickel and Plant Disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral Nutrition and Plant Disease, 1st edn. The American Phytopathological Society, St Paul, Minnesota, pp 215–231

    Google Scholar 

  • Wood BW, Reilly CC, Bock CH, Hotchkiss MW (2012) Suppression of pecan scab by nickel. HortScience 47:503–508

    Article  CAS  Google Scholar 

  • Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 9:1–25

    Article  Google Scholar 

  • Zhou Y, J-li H, X-li Z, L-ming Z, X-fang W, Guo N, J-ming Z, Xing H (2018) Overexpression of chalcone isomerase (CHI) increases resistance against Phytophthora sojae in soybean. Journal of Plant Biology 61:309–319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Rodrigues thanks the National Council for Technological and Scientific Development (CNPq) for his fellowship. Grants from FAPEMIG and CNPq to Prof. Rodrigues supported this study. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Bianca A. F. and Fabrício A. R. conceived and designed the experiments. Bianca A. F., Flávia C. T. R., Bárbara B. M. P., Leandro C. S., Bruno N. Silva, and Andersom M. E. performed the experiments. Bianca A. F. analyzed the data and drafted the manuscript. Fabrício A. R. provided funds for the investigation and revised the drafted manuscript.

Corresponding author

Correspondence to Fabrício Ávila Rodrigues.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontes, B.A., Torres Rodrigues, F.C., Picanço, B.B.M. et al. Nickel potentiates soybean resistance against Sclerotinia sclerotiorum infection. Trop. plant pathol. 49, 193–208 (2024). https://doi.org/10.1007/s40858-023-00620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-023-00620-6

Keywords

Navigation