Skip to main content
Log in

Sensitivity to metalaxyl, mefenoxam, and cymoxanil in Phytophthora andina isolates collected from tree tomato (Solanum betaceum) in Ecuador

  • Short Communication
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

In Ecuador, tree tomato (Solanum betaceum) production is continuous throughout the year. Blight caused by Phythophthora andina is usually controlled with frequent fungicide applications containing the active ingredients metalaxyl, mefenoxam, or cymoxanil. The constant presence of inoculum year-round, the high number of sprays per season, and a pathogen population constituted by a single clonal lineage, exert a high selection pressure for development of resistance to these fungicides. The objective of this study was to measure the sensitivity of P. andina from tree tomato to the active ingredients metalaxyl, mefenoxam, and cymoxanil. For that, 69 isolates were collected from tree tomato in five provinces of Ecuador and evaluated in vitro with standard techniques to classify them as resistant, intermediate, or sensitive to metalaxyl and mefenoxam. Thirty-one of these isolates were evaluated in vitro for their sensitivity to cymoxanil by estimating EC50 by probit analysis. Most isolates were sensitive to metalaxyl (44.9%) and mefenoxam (56.5%), and 29% of the isolates had intermediate sensitivity to both fungicides. The percentage of resistant isolates was higher with metalaxyl (26.1%) than with mefenoxam (14.5%). Isolates showed a wide range of sensitivity to cymoxanil with EC50 values between 0.016 and 208.288 μg/mL. Restriction of mycelial growth occurred even with the lowest concentration dosage (0.1 μg/mL). Most isolates (55.6%) had intermediate sensitivity to cymoxanil, 40.7% were sensitive, and only one (3.7%) was resistant. The resistant isolate was collected in Napo and is the first report of resistance to cymoxanil in Ecuador. The Ecuadorian population of P. andina attacking tree tomato shows some level of resistance to three of the fungicides used to control the disease, and therefore the alternating use of active ingredients is advisable to reduce the increase of resistance in the pathogen population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. Isolate information is available on-line at BioWeb, https://bioweb.bio/portal.

References

  • Adler NE, Erselius LJ, Chacón MG, Flier WG, Ordoñez ME, Kroon LP, Forbes GA (2004) Genetic diversity of Phytophthora infestans sensu lato in Ecuador provides new insight into the origin of this important plant pathogen. Phytopathology 94(2):154–162

    Article  CAS  Google Scholar 

  • Aiello D, Hansen ZR, Smart CD, Polizzi G, Guarnaccia V (2018) Characterisation and mefenoxam sensitivity of Phytophthora spp. from ornamental plants in Italian nurseries. Phytopathologia Mediterranea 57:245–256

    CAS  Google Scholar 

  • Burbano-David DM (2014) Determinación del tipo de apareamiento y evaluación del efecto de los ingredientes activos metalaxil y cimoxanil en poblaciones de Phytophthora infestans sensu lato aisladas de tomate de árbol (Solanum betaceum Cav.). Universidad de Nariño, San Juan de Pasto, Colombia. http://sired.udenar.edu.co/890/

  • Caten CE, Jinks JL (1968) Spontaneous variability of single isolates of Phytophthora infestans. I Cultural Variation. Canadian Journal of Botany 46:329–348

    Article  Google Scholar 

  • Céspedes MC, Cárdenas ME, Vargas AM, Rojas A, Morales JG, Jiménez P, Bernal AJ, Restrepo S (2013) Physiological and molecular characterization of Phytophthora infestans isolates from the Central Colombian Andean Region. Revista Iberoamericana de Micología 30:81–87

    Article  Google Scholar 

  • Danies G, Small IM, Myers K, Childers R, Fry WE (2013) Phenotypic characterization of recent clonal lineages of Phytophthora infestans in the United States. Plant Disease 97:873–881

    Article  CAS  Google Scholar 

  • Davidse LC, Looijen D, Turkensteen LJ, Van der Wal D (1981) Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Netherlands Journal of Plant Pathology 87:65–68

    Article  Google Scholar 

  • de Miranda BEC, Dias Suassuna N, Reis A (2010) Mating type, mefenoxam sensitivity, and pathotype diversity in Phytophthora infestans isolates from tomato in Brazil. Pesquisa Agropecuária Brasileira 45:671–679

    Article  Google Scholar 

  • Dunn AR, Milgroom MG, Meitz JC, McLeod A, Fry WE, McGrath MT, Dillard HR, Smart CD (2010) Population structure and resistance to mefenoxam of Phytophthora capsici in New York State. Plant Disease 94:1461–1468

    Article  CAS  Google Scholar 

  • Escudero Ramírez M, Marín Montoya M, Jaramillo Villegas S, Cotes Torres JM (2009) Metodología de evaluación de la sensibilidad a fungicidas QoI – fenamidone: caso de estudio Phytophthora infestans (Mont.) de Bary. Revista Facultá Nacional de Agronomia Medellín 62:4773–4782

    Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordoñez ME, Fry BA, Doucett K, Fry WE (1997) Population genetic structure of Phytophthora infestans in Ecuador. Phytopathology 87:375–380

    Article  CAS  Google Scholar 

  • Forbes GA, Gamboa S, Lindqvist-Kreuze H, Oliva RF, Pérez W (2016) Identification of an A2 population of Phythophthora andina attacking tree tomato in Peru indicates a risk of sexual reproduction in this pathosystem. Plant Pathology 65:1109–1117

    Article  CAS  Google Scholar 

  • Fry WE, Grünwald NJ, Cooke DEL, McLeod A, Forbes GA, Cao K (2009) Population genetics and population diversity of Phytophthora infestans. In: Lamour K, Kamoun S, (Eds.) Oomycete genetics and genomics: biology, interactions with plants and animals, and toolbox. Wiley, New York

  • Gómez-Alpizar L, Hu C, Oliva R, Forbes G, Ristaino JB (2008) Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans. Mycologia 100(4):590–602

    Article  Google Scholar 

  • González-Tobón J, Childers R, Olave C, Regnier M, Rodríguez-Jaramillo A, Fry W, Restrepo S, Danies G (2020) Is the phenomenon of mefenoxam-acquired resistance in Phytophthora infestans universal? Plant Disease 104:211–221

    Article  Google Scholar 

  • Grünwald NJ, Sturbaum AK, Romero Montes G, Garay Serrano E, Lozoya-Saldaña H, Fry WE (2006) Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the center of origin. Phytopathology 96(12):1397–1403

    Article  Google Scholar 

  • Hwang J, Benson DM (2005) Identification, mefenoxam sensitivity, and compatibility type of Phytophthora spp. attacking floriculture crops in North Carolina. Plant Disease 89:185–190

    Article  CAS  Google Scholar 

  • Kroon L, Bakker F, Van den Bosch G, Bonants P, Flier W (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology 41:766–782

    Article  CAS  Google Scholar 

  • Mideros MF, Turissini DA, Guayazán N, Ibarra-Avila H, Danies G, Cárdenas M, Myers K, Tabima J, Goss EM, Bernal A, Lagos LE, Grajales A, Gonzalez LN, Cooke DEL, Fry WE, Grünwald N, Matute DR, Restrepo S (2018) Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia. Persoonia 41:39–55

    Article  CAS  Google Scholar 

  • Oliva RF, Kroon LP, Chacón G, Flier WG, Ristaino JB, Forbes GA (2010) Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology 59(4):613–625

    Article  CAS  Google Scholar 

  • Parra G, Ristaino JB (2001) Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease 85:1069–1075

    Article  CAS  Google Scholar 

  • Pérez W, Lara J, Forbes GA (2009) Resistance to metalaxyl-M and cymoxanil in a dominant clonal lineage of Phytophthora infestans in Huánuco, Peru, an area of continuous potato production. European Journal of Plant Pathology 125:87–95

    Article  Google Scholar 

  • Reis A, Ribeiro FHS, Maffia LA, Mizubuti ESG (2005) Sensitivity of Brazilian isolates of Phytophthora infestans to commonly used fungicides in tomato and potato crops. Plant Disease 89:1279–1284

    Article  CAS  Google Scholar 

  • Rekanović E, Potočnik I, Milijašević-Marčić S, Stepanović M, Todorović B, Mihajlović M (2012) Toxicity of metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb to Phytophthora infestans isolates from Serbia. Journal of Environmental Science and Health B 47:403–409

    Article  Google Scholar 

  • Revelo E, Dorado G, Lagos LE, Burbano-Figueroa O (2011) Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Tropical Plant Pathology 36(6):367–373

    Article  Google Scholar 

  • Revelo J, Pérez E, Maila MV (2004) Cultivo ecológico del tomate de árbol en Ecuador: Texto de consulta del estudiante. INIAP, Estación Experimental Santa Catalina/PROMSA/FONTAGRO, Quito, Ecuador

  • Sujkowski LS, Fry BA, Power RJ, Goodwin SB, Peever TL, Hamlen RA, Fry WE (1995) Sensitivities of Mexican isolates of Phytophthora infestans to chlorothalonil, cymoxanil, and metalaxyl. Plant Disease 79:1117–1120

    Article  CAS  Google Scholar 

  • Therrien CD, Tooley PW, Spielman LJ, Fry WE, Ritch DL, Shelly SE (1993) Nuclear DNA content, allozyme phenotypes and metalaxyl sensitivity of Phytophthora infestans from Japan. Mycological Research 97:945–950

    Article  CAS  Google Scholar 

  • Zhu G, Huang F, Feng L, Qin B, Yang Y, Chen Y, Lu X (2008) Sensitivities of Phytophthora infestans to metalaxyl, cymoxanil, and dimethomorph. Agricultural Sciences in China 7:831–840

    Article  Google Scholar 

Download references

Acknowledgements

We thank the International Potato Center (Quito) and Marcelo Vinueza for their assistance with Phytophthora andina isolates and Fabián Muñoz for assistance in the statistical analysis.

Funding

This study was supported by the Pontificia Universidad Católica del Ecuador (Projects QINV0183 and QINV040).

Author information

Authors and Affiliations

Authors

Contributions

Project conceptualization and supervision: MG Chacón and ME. Ordóñez. Pathogen collection and isolation: E Caicedo, MG Chacón. Designed the experiments: MG Chacón, E Caicedo. Performed the experiments: E Caicedo. Analyzed the data: MG Chacón, E Caicedo. Project administration: ME Ordóñez. Writing original draft: MG Chacón. All the authors commented on drafts of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to María Gabriela Chacón.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacón, M.G., Caicedo, E. & Ordóñez, M.E. Sensitivity to metalaxyl, mefenoxam, and cymoxanil in Phytophthora andina isolates collected from tree tomato (Solanum betaceum) in Ecuador. Trop. plant pathol. 47, 786–794 (2022). https://doi.org/10.1007/s40858-022-00512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-022-00512-1

Keywords

Navigation