Skip to main content
Log in

Evaluation of Solanum peruvianum (sensu lato) germplasm to a standard Ralstonia solanacearum race 1/biovar 1 isolate and to a novel ‘Hawaii 7996’ resistance-overcoming race 3/biovar 2A isolate from Brazil

  • Short Communication
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

A major strategy to control the bacterial wilt (BW), caused by the Ralstonia species complex in tomato has been the employment of resistant cultivars and/or root-stocks. The tomato line ‘Hawaii 7996’ is a major source of stable and broad-spectrum resistance against BW. However, the detection of R. solanacearum isolates that overcome the ‘Hawaii 7996’ resistance in Brazil and elsewhere highlights the need for preemptive breeding actions. In the present work, 72 accessions of Solanum peruvianum (sensu lato) and other four wild species were evaluated against two R. solanacearum isolates: ‘CNPH-RS 488’ (race 3/biovar 2A/phylotype II/sequevar 1), virulent on ‘Hawaii 7996’, and ‘CNPH-RS 489’ (race 1/biovar 1/phylotype IIA/sequevar 50), a standard isolate that is avirulent on Hawaii 7996′. The responses to inoculation of the tested accessions were compared to that of ‘Hawaii 7996’ and ‘L390’ (BW-susceptible). The clear-cut differences in the responses among accessions to both isolates suggested the presence of distinct BW resistance mechanisms in this germplasm. Sixteen accessions displayed resistant reactions to ‘CNPH-RS 488’ and 31 to ‘CNPH-RS 489’. However, only seven accessions (predominantly of the species S. corneliomulleri) displayed resistance reactions to both isolates. These new sources of resistance to R. solanacearum may be useful for breeding programs aiming to anticipate potential problems with the further dissemination of bacterial populations with a virulence profile similar to that of R. solanacearum ‘CNPH-RS 488’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Almeida I, Destéfano S, Rodrigues Neto J, Malavolta Júnior V (2003) Southern bacterial wilt of geranium caused by Rlstonia solanacearum biovar 2/race 3 in Brazil. Revista de Agricultura 78:49–56

    Google Scholar 

  • Bittner R, Arellano C, Mila A (2016) Effect of temperature and resistance of tobacco cultivars to the progression of bacterial wilt, caused by Ralstonia solanacearum. Plant and Soil 408:299–310

    Article  CAS  Google Scholar 

  • Boiteux L, Monma S (1994) Effect of plant age on expression of the resistance to Pseudomonas solanacearum in tomato in response to root dipping inoculation. Fitopatologia Brasileira 19:102–105

    Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006a) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics 113:110–121

    Article  CAS  PubMed  Google Scholar 

  • Carmeille A, Prior P, Kodja H, Chiroleu F, Luisetti J, Besse P (2006b) Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. Journal of Phytopathology 154:398–402

    Article  Google Scholar 

  • Chetelat RT, Pertuzé RA, Faúndez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167:77–93

    Article  Google Scholar 

  • Ciampi L, Sequeira L, French E (1980) Latent infection of potato tubers by Pseudomonas solanacearum. American Journal of Potato Research 57:377–386

    Article  Google Scholar 

  • Cruz APZ, Ferreira V, Pianzzola MJ, Siri MI, Coll NS, Valls M (2014) A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain. Molecular Plant-Microbe Interactions 27:277–285

    Article  CAS  PubMed  Google Scholar 

  • Deberdt P, Olivier J, Thoquet P, Quénéhervé P, Prior P (1999) Evaluation of bacterial wilt resistance in tomato lines nearly isogenic for the Mi gene for resistance to root-knot. Plant Pathology 48:415–424

    Article  Google Scholar 

  • Domínguez E, Cuartero J, Fernández-Muñoz R (2005) Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica 142:253–263

    Article  Google Scholar 

  • Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward A (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 449–461

    Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039–1042

    Article  Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Grimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathology 42:589–594

    Article  Google Scholar 

  • Guidot A, Elbaz M, Carrère S, Siri M, Pianzzola M, Prior P, Boucher C (2009) Specific genes from the potato brown rot strains of Ralstonia solanacearum and their potential use for strain detection. Phytopathology 99:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Hai TTH, Esch E, Wang J-F (2008) Resistance to Taiwanese race 1 strains of Ralstonia solanacearum in wild tomato germplasm. European Journal of Plant Pathology 122:471–479

    Article  Google Scholar 

  • Hanson P, Lu S-F, Wang J-F, Chen W, Kenyon L, Tan C-W, Tee KL, Wang Y-Y, Hsu Y-C, Schafleitner R (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae 201:346–354

    Article  CAS  Google Scholar 

  • Hayward A (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • Hogenboom N (1972) Breaking breeding barriers in Lycopersicon. 1. The genus Lycopersicon, its breeding barriers and the importance of breaking these barriers. Euphytica 21:221–227

    Article  Google Scholar 

  • Jaworski C, Phatak S, Ghate S, Gitaitis R, Widrlechner M (1987) Ga 1565-2-4 Bwt, Ga 219-1-2 Bwt, Ga 1095-1-4 Bwt, and Ga 1405-1-2 Bwt bacterial wilt-tolerant tomato. HortScience 22:324

    Google Scholar 

  • Jianwei L, Huifang J, Xiaoping R, Xiaojie Z, Boshou L (2010) Identification and molecular traits of ICRISAT mini core collection of peanut species with resistance to bacterial wilt. Chinese Agriculture Science Bulletin 26:47–51

    Google Scholar 

  • Julián O, Herráiz J, Corella S, Di-Lolli I, Soler S, Díez M, Pérez-De-Castro A (2013) Initial development of a set of introgression lines from Solanum peruvianum PI 126944 into tomato: exploitation of resistance to viruses. Euphytica 193:183–196

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Khoodoo MHR, Ganoo ES, Saumtally AS (2010) Molecular characterization and epidemiology of Ralstonia solanacearum race 3 biovar 2 causing brown rot of potato in Mauritius. Journal of Phytopathology 158:503–512

    Article  CAS  Google Scholar 

  • Kim SG, Hur O-S, Ro N-Y, Ko H-C, Rhee J-H, Sung JS, Ryu K-Y, Lee S-Y, Baek HJ (2016) Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. The Plant Pathology Journal 32:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurabachew H, Wydra K (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control 67:75–83

    Article  Google Scholar 

  • Lebeau A, Daunay M-C, Frary A, Palloix A, Wang J-F, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  CAS  PubMed  Google Scholar 

  • Lin C-H, Hsu S-T, Tzeng K-C, Wang J-F (2009) Detection of race 1 strains of Ralstonia solanacearum in field samples in Taiwan using a BIO-PCR method. European Journal of Plant Pathology 124:75–85

    Article  CAS  Google Scholar 

  • Lopes C (2015) Bacterial Wilt: a threatening disease of tomato cultivated under warm temperatures. Embrapa Hortaliças, Comunicado Técnico 109. 4p

  • Lopes C, Boiteux LS (2012) Breeding for resistance to bacterial diseases. In: Fritsche-Neto R, Borém A (eds) Plant breeding for biotic stress resistance. Springer, Berlin, pp 37–55

    Chapter  Google Scholar 

  • Lopes CA, Boiteux LS, Eschemback V (2015) Eficácia relativa de porta-enxertos comerciais de tomateiro no controle da murcha-bacteriana. Horticultura Brasileira 33:125–130

    Article  Google Scholar 

  • Mahuku GS (2004) A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter 22:71–81

    Article  CAS  Google Scholar 

  • Marques E, Uesugi CH, Ferreira MA, Rezende DV (2012) Characterization of isolates of Ralstonia solanacearum biovar 2, pathogenic to Eucalyptus "urograndis" hybrids. Tropical Plant Pathology 37:399–408

    Article  Google Scholar 

  • Milling A, Babujee L, Allen C (2011) Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6:e15853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaho K, Inoue H, Takayama T, Miyagawa H (2004) Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. Journal of General Plant Pathology 70:115–119

    Article  Google Scholar 

  • Norman DJ, Zapata M, Gabriel DW, Duan Y, Yuen JM, Mangravita-Novo A, Donahoo RS (2009) Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathology 99:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). American Journal of Botany 88:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Peralta IE, Knapp S, Spooner DM, Lammers TG (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany 30:424–434

    Article  Google Scholar 

  • Poussier S, Trigalet-Demery D, Vandewalle P, Goffinet B, Luisetti J, Trigalet A (2000) Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 146:1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Prior P, Bart S, Leclercq S, Darrasse A, Anais G (1996) Resistance to bacterial wilt in tomato as discerned by spread of Pseudomonas (Burholderia) solanacearum in the stem tissues. Plant Pathology 45:720–726

    Article  Google Scholar 

  • Rick C, Chetelat R. (1995) Utilization of related wild species for tomato improvement. In: Fernández-Muñoz R, Cuartero J, Gómez-Guillamón ML, eds. Proceedings of the I International Symposium on Solanacea for Fresh Market 412, 1995. Malaga: ISHS, 21–38

    Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annual Review of Phytopathology 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Swanson JK, Yao J, Tans-Kersten J, Allen C (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95:136–143

    Article  PubMed  Google Scholar 

  • Wang J-F, Hanson P, Barnes J (1998) Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In: Prior P, Allen C, Elphinstone J (eds) Bacterial Wilt Disease. Springer, Berlin, pp 269–275

    Chapter  Google Scholar 

  • Wang J-F, Ho F-I, Truong HTH, Huang S-M, Balatero CH, Dittapongpitch V, Hidayati N (2013) Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190:241–252

    Article  CAS  Google Scholar 

  • Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology 73:6790–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash C, Zhuang W, He G (2016) QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Molecular Breeding 36:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Carlos A. Lopes and Leonardo S. Boiteux were supported by fellowships from the Brazilian National Research Council (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Rossato.

Additional information

Section Editor: Leandro S. A. Gonçalves

Electronic supplementary material

Figure S1

Visualization of the entire experiment after the appearance of wilt symptoms on accessions of wild tomato species inoculated with Ralstonia solanacearum isolate CNPH-RS 488 (A). Comparison between L390 (susceptible control, left), accession CNPH 938 (middle) and Hawaii 7996 (resistant control, right) inoculated with isolate CNPH-RS 488 (B). (PNG 3020 kb)

High resolution image (TIF 10691 kb)

Table S1

Accessions evaluated for resistance to bacterial wilt caused by Ralstonia solanacearum isolates CNPH-RS 488 and CNPH-RS 489. (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossato, M., Lopes, C.A. & Boiteux, L.S. Evaluation of Solanum peruvianum (sensu lato) germplasm to a standard Ralstonia solanacearum race 1/biovar 1 isolate and to a novel ‘Hawaii 7996’ resistance-overcoming race 3/biovar 2A isolate from Brazil. Trop. plant pathol. 43, 477–483 (2018). https://doi.org/10.1007/s40858-018-0255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-018-0255-8

Keywords

Navigation