Skip to main content
Log in

Role of Artificial Intelligence in Medical Image Analysis: A Review of Current Trends and Future Directions

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

This review offers insight into AI’s current and future contributions to medical image analysis. The article highlights the challenges associated with manual image interpretation and introduces AI methodologies, including machine learning and deep learning. It explores AI’s applications in image segmentation, classification, registration, and reconstruction across various modalities like X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound.

Background

Medical image analysis is vital in modern healthcare, facilitating disease diagnosis, treatment, and monitoring. Integrating artificial intelligence (AI) techniques, particularly deep learning, has revolutionized this field.

Methods

Recent advancements are discussed, such as generative adversarial networks (GANs), transfer learning, and federated learning. The review assesses the advantages and limitations of AI in medical image analysis, underscoring the importance of interpretability, robustness, and generalizability in clinical practice. Ethical considerations related to data privacy, bias, and regulatory aspects are also examined.

Results

The article concludes by exploring future directions, including personalized medicine, multi-modal fusion, real-time analysis, and seamless integration with electronic health records (EHRs).

Conclusion

This comprehensive review delineates artificial intelligence’s current and prospective role in medical image analysis. With implications for researchers, clinicians, and policymakers, it underscores AI’s transformative potential in enhancing patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Sharing Statement

Data sharing does not apply to this manuscript, as no datasets were generated or analyzed during the current study.

References

  1. Saw, S. N., & Ng, K. H. (2022). Current challenges of implementing artificial intelligence in medical imaging. Physica Medica, 100, 12–17.

    Article  PubMed  Google Scholar 

  2. Shmatko, A., Ghaffari Laleh, N., Gerstung, M., & Kather, J. N. (2022). Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nature cancer, 3(9), 1026–1038.

    Article  PubMed  Google Scholar 

  3. Abdelhalim, H., Berber, A., Lodi, M., Jain, R., Nair, A., Pappu, A., & Ahmed, Z. (2022). Artificial intelligence, healthcare, clinical genomics, and pharmacogenomics approaches in precision medicine. Frontiers in Genetics, 13, 929736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., …Sultan, M. A. (2022). Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed research international, 2022.

  5. Tokgöz, E., & Carro, M. A. (2023). Applications of artificial intelligence, machine learning, and deep learning on facial plastic surgeries. Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts (pp. 281–306). Springer Nature Switzerland.

  6. Mijwil, M., Salem, I. E., & Ismaeel, M. M. (2023). The significance of Machine Learning and Deep Learning techniques in Cybersecurity: A Comprehensive Review. Iraqi Journal for Computer Science and Mathematics, 4(1), 87–101.

    Google Scholar 

  7. Elyan, E., Vuttipittayamongkol, P., Johnston, P., Martin, K., McPherson, K., Jayne, C., & Sarker, M. K. (2022). Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Artificial Intelligence Surgery, 2.

  8. Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M. A., Shambour, M. K. Y., Alsalibi, A. I., & Gandomi, A. H. (2022). Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 145, 105458.

    Article  PubMed  Google Scholar 

  9. Taherdoost, H. (2023). Enhancing Social Media Platforms with Machine Learning algorithms and neural networks. Algorithms, 16(6), 271.

    Article  Google Scholar 

  10. Zhang, Y., Weng, Y., & Lund, J. (2022). Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics, 12(2), 237.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, 10(07), 3897–3904.

    Google Scholar 

  12. Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial intelligence in healthcare: Review, ethics, trust challenges & future research directions. Engineering Applications of Artificial Intelligence, 120, 105894.

    Article  Google Scholar 

  13. Wu, C., Zhang, R., Kotagiri, R., & Bouvry, P. (2023). Strategic decisions: Survey, taxonomy, and future directions from an artificial intelligence perspective. ACM Computing Surveys, 55(12), 1–30.

    Article  CAS  Google Scholar 

  14. von Ende, E., Ryan, S., Crain, M. A., & Makary, M. S. (2023). Artificial intelligence, augmented reality, and virtual reality advances and applications in interventional radiology. Diagnostics, 13(5), 892.

    Article  Google Scholar 

  15. Soleymanzadeh, R., & Kashef, R. (2023). Efficient intrusion detection using multi-player generative adversarial networks (GANs): An ensemble-based deep learning architecture. Neural Computing and Applications, 35(17), 12545–12563.

    Article  Google Scholar 

  16. Dubey, R., Bryde, D. J., Dwivedi, Y. K., Graham, G., & Foropon, C. (2022). Impact of artificial intelligence-driven big data analytics culture on agility and resilience in the humanitarian supply chain: A practice-based view. International Journal of Production Economics, 250, 108618.

    Article  Google Scholar 

  17. Salahuddin, Z., Woodruff, H. C., Chatterjee, A., & Lambin, P. (2022). Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in Biology and Medicine, 140, 105111.

    Article  PubMed  Google Scholar 

  18. Chen, X., Wang, X., Zhang, K., M. FungK., C. Thai, T., Moore, K., & Qiu, Y. (2022). Recent advances and clinical applications of deep learning in medical image analysis. Medical Image Analysis, 79, 102444.

  19. Kaur, P., & Singh, R. K. (2023). A review of optimization techniques for medical image analysis. Concurrency and Computation: Practice and Experience, 35(1), e7443.

  20. Sohan, M. F., & Basalamah, A. (2023). A systematic review on Federated Learning in Medical Image Analysis. Ieee Access : Practical Innovations, Open Solutions.

  21. Mall, P. K., Singh, P. K., Srivastav, S., Narayan, V., Paprzycki, M., Jaworska, T., & Ganzha, M. (2023). A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthcare Analytics, 100216.

  22. Abdikhoshimovich, K. J., Olimdjanovich, A. O., Pilania, H., & Kawale, K. V. (2023). Applications of physics in Diagnostic Imaging. European Journal of Medical Genetics and Clinical Biology, 1(1), 98–107.

    Google Scholar 

  23. Al-Azawi, M. A. (2023). Symmetry-based brain abnormality identification in magnetic resonance images (MRI). Multimedia Tools and Applications, 82(2), 2563–2586.

    Article  Google Scholar 

  24. Saeedi, S., Rezayi, S., Keshavarz, H., & Niakan Kalhori, R., S (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 1–17.

    Article  Google Scholar 

  25. Ahmadi, M., Sharifi, A., Jafarian Fard, M., & Soleimani, N. (2023). Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. International Journal of Neuroscience, 133(1), 55–66.

    Article  PubMed  Google Scholar 

  26. Tatsugami, F., Nakaura, T., Yanagawa, M., Fujita, S., Kamagata, K., Ito, R., … Naganawa,S. (2023). Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction. Diagnostic and Interventional Imaging.

  27. Altini, N., Prencipe, B., Cascarano, G. D., Brunetti, A., Brunetti, G., Triggiani, V., & Bevilacqua, V. (2022). Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey. Neurocomputing, 490, 30–53.

    Article  Google Scholar 

  28. Liu, W., Yan, L., Ma, N., Wang, G., Ma, X., Liu, P., & Tang, R. (2024). Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data. Applied Sciences, 14(2), 774.

  29. Mahbub, M. K., Biswas, M., Gaur, L., Alenezi, F., & Santosh, K. C. (2022). Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseases: COVID-19, pneumonia, and tuberculosis. Information Sciences, 592, 389–401.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dai, J., Wang, H., Xu, Y., Chen, X., & Tian, R. (2023, March). Clinical application of AI-based PET images in oncological patients. Seminars in Cancer Biology. Academic.

  31. Illimoottil, M., & Ginat, D. (2023). Recent advances in Deep Learning and Medical Imaging for Head and Neck Cancer Treatment: MRI, CT, and PET scans. Cancers, 15(13), 3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huo, T., Li, L., Chen, X., Wang, Z., Zhang, X., Liu, S., & Deng, K. (2023). Artificial intelligence-aided method to detect uterine fibroids in ultrasound images: A retrospective study. Scientific Reports, 13(1), 3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bowness, J. S., Macfarlane, A. J., Burckett-St Laurent, D., Harris, C., Margetts,S., Morecroft, M., … Higham, H. (2023). Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anesthesia. British Journal of Anaesthesia, 130(2), 226–233.

  34. Saboury, B., Bradshaw, T., Boellaard, R., Buvat, I., Dutta, J., Hatt, M., & Rahmim, A. (2023). Artificial Intelligence in Nuclear Medicine: Opportunities, challenges, and responsibilities toward a trustworthy ecosystem. Journal of Nuclear Medicine, 64(2), 188–196.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Apostolopoulos, I. D., Papandrianos, N. I., Feleki, A., Moustakidis, S., & Papageorgiou, E. I. (2023). Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies. EJNMMI Physics, 10(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, X., Kandel, M. E., He, S., Hu, C., Lee, Y. J., Sullivan, K., & Popescu, G. (2023). Artificial confocal microscopy for deep label-free imaging. Nature Photonics, 17(3), 250–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aggarwal, S., Gupta, S., Gupta, D., Gulzar, Y., Juneja, S., Alwan, A. A., & Nauman, A. (2023). An artificial intelligence-based stacked ensemble approach for protein subcellular localization prediction in confocal microscopy images. Sustainability, 15(2), 1695.

    Article  CAS  Google Scholar 

  38. Rogasch, J. M., Hofheinz, F., van Heek, L., Voltin, C. A., Boellaard, R., & Kobe, C. (2022). Influences on PET quantification and interpretation. Diagnostics, 12(2), 451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anan, N., Zainon, R., & Tamal, M. (2022). A review on advances in 18F-FDG PET/CT radiomics standardization and application in lung disease management. Insights into Imaging, 13(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amyar, A., Modzelewski, R., Vera, P., Morard, V., & Ruan, S. (2022). Weakly supervised tumor detection in PET using class response for treatment outcome prediction. Journal of Imaging, 8(5), 130.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng, Z., Wen, J., Huang, G., & Yan, J. (2021). Applications of artificial intelligence in nuclear medicine image generation. Quantitative Imaging in Medicine and Surgery, 11(6), 2792.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crișan, G., Moldovean-Cioroianu, N. S., Timaru, D. G., Andrieș, G., Căinap, C., & Chiș, V. (2022). Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. International Journal of Molecular Sciences, 23(9), 5023.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rashidi Fathabadi, F., Grantner, J. L., Shebrain, S. A., & Abdel-Qader, I. (2023). 3D autonomous surgeon’s hand movement assessment using a cascaded fuzzy supervisor in multi-thread video processing. Sensors (Basel, Switzerland), 23(5), 2623.

    Article  PubMed  Google Scholar 

  44. Ay, B., Turker, C., Emre, E., Ay, K., & Aydin, G. (2022). Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Computers in Biology and Medicine, 147, 105725.

    Article  PubMed  Google Scholar 

  45. Marrone, F., Fabris, D. M., Galli, M., Giberti, H., Di Martino, M., Di Martino, G., & Tarabini, M. (2023, June). An automated system for the design of orthopedic insoles. In 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1–4). IEEE.

  46. Jin, W., Li, X., Fatehi, M., & Hamarneh, G. (2023). Guidelines and evaluation of clinical explainable AI in medical image analysis. Medical Image Analysis, 84, 102684.

    Article  PubMed  Google Scholar 

  47. Masoodi, F., Quasim, M., Bukhari, S., Dixit, S., & Alam, S. (Eds.). (2023). Applications of machine learning and deep learning on Biological Data. CRC.

  48. Haug, C. J., & Drazen, J. M. (2023). Artificial intelligence and machine learning in clinical medicine, 2023. New England Journal of Medicine, 388(13), 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  49. Antonelli, L., & Guarracino, M. R. (2023). Special issue on supervised and unsupervised classification algorithms—foreword from Guest editors. Algorithms, 16(3), 145.

    Article  Google Scholar 

  50. Su, C., Wang, B., Lv, Y., Zhang, M., Peng, D., Bate, B., & Zhang, S. (2023). Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 17(2), 387–405.

    Google Scholar 

  51. Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440.

    Article  Google Scholar 

  52. Dafermos, Y., Gabor, D., & Michell, J. (2023). Institutional supercycles: An evolutionary macro-finance approach. New Political Economy, 1–20.

  53. Dou, B., Zhu, Z., Merkurjev, E., Ke, L., Chen, L., Jiang, J., … Wei, G. W. (2023).Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews.

  54. Liu, S., Wang, L., Zhang, W., He, Y., & Pijush, S. (2023). A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geological Journal.

  55. Singh, S. A., & Desai, K. A. (2023). Automated surface defect detection framework using machine vision and convolutional neural networks. Journal of Intelligent Manufacturing, 34(4), 1995–2011.

    Article  Google Scholar 

  56. Subramaniam, R., Stoyanova, R., Zhang, J., Chen, M., Ding, Z., & Niu, G. (2023). Zhejiang University School of Medicine, Hangzhou, China, 5 Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China. Reviews in cancer imaging and image-directed interventions, 73.

  57. Iman, M., Arabnia, H. R., & Rasheed, K. (2023). A review of deep transfer learning and recent advancements. Technologies, 11(2), 40.

    Article  Google Scholar 

  58. Wang, J., & Chen, Y. (2022). Transfer Learning for Computer Vision. In Introduction to Transfer Learning: Algorithms and Practice (pp. 265–273). Singapore: Springer Nature Singapore.

  59. Mazurowski, M. A., Dong, H., Gu, H., Yang, J., Konz, N., & Zhang, Y. (2023). Segment anything model for medical image analysis: An experimental study. Medical Image Analysis, 102918.

  60. Madan, M., Reich, C., & Hassenpflug, F. (2023, April). Drawing and Analysis of Bounding Boxes for Object Detection with Anchor-Based Models. In Scandinavian Conference on Image Analysis (pp. 359–373). Cham: Springer Nature Switzerland.

  61. Cheng, H., Wang, Y., & Meng, M. Q. H. (2023). Anchor-based Multi-scale Deep Grasp pose detector with encoded Angle Regression. IEEE Transactions on Automation Science and Engineering.

  62. Feroz, M. A., Sultana, M., Hasan, M. R., Sarker, A., Chakraborty, P., & Choudhury, T. (2022). Object detection and classification from a real-time video using SSD and YOLO models. In Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2021 (pp. 37–47). Springer Singapore.

  63. Demetriou, D., Mavromatidis, P., Robert, P. M., Papadopoulos, H., Petrou, M. F., & Nicolaides, D. (2023). Real-time construction demolition waste detection using state-of-the-art deep learning methods: Single–stage vs. two-stage detectors. Waste Management, 167, 194–203.

    Article  PubMed  Google Scholar 

  64. Albattah, W., Masood, M., Javed, A., Nawaz, M., & Albahli, S. (2023). Custom CornerNet: A drone-based improved deep learning technique for large-scale multi-class pest localization and classification. Complex & Intelligent Systems, 9(2), 1299–1316.

    Article  Google Scholar 

  65. Aljabri, M., & AlGhamdi, M. (2022). A review on the use of deep learning for medical image segmentation. Neurocomputing.

  66. Punn, N. S., & Agarwal, S. (2022). Modality specific U-Net variants for biomedical image segmentation: A survey. Artificial Intelligence Review, 55(7), 5845–5889.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jeong, J. J., Tariq, A., Adejumo, T., Trivedi, H., Gichoya, J. W., & Banerjee, I. (2022). A systematic review of generative adversarial networks (gans) for medical image classification and segmentation. Journal of Digital Imaging, 35(2), 137–152.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jafari, M., Shoeibi, A., Khodatars, M., Ghassemi, N., Moridian, P., Alizadehsani,R., … Acharya, U. R. (2023). Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review. Computers in Biology and Medicine, 106998.

  69. Yousaf, F., Iqbal, S., Fatima, N., Kousar, T., & Rahim, M. S. M. (2023). Multi-class disease detection using deep learning and human brain medical imaging. Biomedical Signal Processing and Control, 85, 104875.

    Article  Google Scholar 

  70. Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H.,… Mellit, A. (2023). A Study of CNN and Transfer Learning in Medical Imaging: Advantages,Challenges, Future Scope. Sustainability, 15(7), 5930.

  71. Hasan, M. K., Ahamad, M. A., Yap, C. H., & Yang, G. (2023). A survey, review, and future trends of skin lesion segmentation and classification. Computers in Biology and Medicine, 106624.

  72. Khadidos, A. O. (2022). ODNN-LDA: Automated Lung Cancer Detection on CT Images Using an Optimal Deep Linear Discriminate Learning Model. In Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2022, Volume 2 (pp. 311–320). Singapore: Springer Nature Singapore.

  73. Prodan, M., Paraschiv, E., & Stanciu, A. (2023). Applying deep learning methods for Mammography analysis and breast Cancer detection. Applied Sciences, 13(7), 4272.

    Article  CAS  Google Scholar 

  74. Ahsan, M. A., Qayyum, A., Razi, A., & Qadir, J. (2022). An active learning method for diabetic retinopathy classification with uncertainty quantification. Medical & Biological Engineering & Computing, 60(10), 2797–2811.

    Article  Google Scholar 

  75. Tesař, J., Muzika, L., Skála, J., Kohlschütter, T., & Honner, M. (2023). Measurement and processing of thermographic data of passing persons for epidemiological purposes. Sensors (Basel, Switzerland), 23(6), 2945.

    Article  PubMed  Google Scholar 

  76. Hu, M., Zhang, J., Matkovic, L., Liu, T., & Yang, X. (2023). Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions. Journal of Applied Clinical Medical Physics, 24(2), e13898.

  77. Donnelly, L. F., Grzeszczuk, R., & Guimaraes, C. V. (2022, April). Use of natural language processing (NLP) in evaluating radiology reports: An update on applications and technology advances. Seminars in Ultrasound, CT and MRI (Vol. 43, pp. 176–181). WB Saunders. 2.

  78. Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744.

    Article  PubMed  Google Scholar 

  79. LeBaron, V., Boukhechba, M., Edwards, J., Flickinger, T., Ling, D., & Barnes, L. E. (2022). Exploring the Use of Wearable sensors and Natural Language Processing Technology to improve patient-clinician communication: Protocol for a feasibility study. JMIR Research Protocols, 11(5), e37975.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu, W., Shen, X., Pun, C. M., & Cun, X. (2023). Explicit visual prompting for low-level structure segmentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 19434–19445).

  81. López-Úbeda, P., Martín-Noguerol, T., Aneiros-Fernández, J., & Luna, A. (2022). Natural language processing in pathology: Current trends and future insights. The American Journal of Pathology.

  82. Preston, S., Wei, M., Rao, R., Tinn, R., Usuyama, N., Lucas, M., … Poon, H. (2023).Toward structuring real-world data: Deep learning for extracting oncology information from clinical text with patient-level supervision. Patterns, 4(4).

  83. Costa, V. G., & Pedreira, C. E. (2023). Recent advances in decision trees: An updated survey. Artificial Intelligence Review, 56(5), 4765–4800.

    Article  Google Scholar 

  84. Balasubramanian, P. K., Lai, W. C., Seng, G. H., & Selvaraj, J. (2023). Apestnet with mask r-cnn for liver tumor segmentation and classification. Cancers, 15(2), 330.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Helwan, A., Azar, D., & Ozsahin, D. U. (2023, February). Medical Reports Summarization Using Text-To-Text Transformer. In 2023 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 01–04). IEEE.

  86. Niraula, D., Sun, W., Jin, J., Dinov, I. D., Cuneo, K., Jamaluddin, J., … El Naqa,I. (2023). A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS). Scientific Reports, 13(1), 5279.

  87. Alqudah, A. M., Qazan, S., & Obeidat, Y. M. (2022). Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds. Soft Computing, 26(24), 13405–13429.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Duong, L. T., Nguyen, P. T., Iovino, L., & Flammini, M. (2023). Automatic detection of COVID-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning. Applied Soft Computing, 132, 109851.

    Article  PubMed  Google Scholar 

  89. Xu, L., Zhang, H., Wang, J., Li, A., Song, S., Ren, H., … Meng, M. Q. H. (2022). Information loss challenges in surgical navigation systems: From information fusion to AI-based approaches. Information Fusion.

  90. Neri, E., Aghakhanyan, G., Zerunian, M., Gandolfo, N., Grassi, R., Miele, V., … SIRM expert group on Artificial Intelligence. (2023). Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology. La radiologia medica, 1–10.

  91. Fathalla, K. M., Youssef, S. M., & Mohammed, N. (2022). DETECT-LC: A 3D deep learning and textural radiomics computational model for lung cancer staging and tumor phenotyping based on computed tomography volumes. Applied Sciences, 12(13), 6318.

    Article  CAS  Google Scholar 

  92. Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., … Socher, R.(2021). Deep learning-enabled medical computer vision. NPJ digital medicine, 4(1), 5.

  93. Swathy, M., & Saruladha, K. (2022). A comparative study of classification and prediction of cardiovascular diseases (CVD) using machine learning and deep learning techniques. ICT Express, 8(1), 109–116.

    Article  Google Scholar 

  94. Hou, J., Zheng, G., Han, L., Shu, Z., Wang, H., Yuan, Z., … Gong, X. (2023). Coronary computed tomography angiography imaging features combined with computed tomography-fractional flow reserve, peri coronary fat attenuation index, and radiomics for predicting myocardial ischemia. Journal of Nuclear Cardiology, 1–13.

  95. Faieq, A. K., & Mijwil, M. M. (2022). Prediction of heart diseases utilizing support vector machine and artificial neural network. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 374–380.

    Article  Google Scholar 

  96. Ahmed, Z., Irtaza, A., Mehmood, A., & Saleem, M. F. (2022, December). An Improved Deep Learning Approach for Heart Attack Detection from Digital Images. In 2022 International Conference on Frontiers of Information Technology (FIT) (pp. 261–266). IEEE.

  97. Appiahene, P., Asare, J. W., Donkoh, E. T., Dimauro, G., & Maglietta, R. (2023). Detection of iron deficiency anemia by medical images: A comparative study of machine learning algorithms. BioData Mining, 16(1), 1–20.

    Article  Google Scholar 

  98. Saradhi, M. V., Rao, P. V., Krishnan, V. G., Sathyamoorthy, K., & Vijayaraja, V. (2023). Prediction of Alzheimer’s Disease using LeNet-CNN model with optimal adaptive bilateral filtering. International Journal of Communication Networks and Information Security, 15(1), 52–58.

    Google Scholar 

  99. Radak, M., Lafta, H. Y., & Fallahi, H. (2023). Machine learning and deep learning techniques for breast cancer diagnosis and classification: A comprehensive review of medical imaging studies. Journal of Cancer Research and Clinical Oncology, 1–19.

  100. Chakravarthy, S. S., Bharanidharan, N., & Rajaguru, H. (2023). Deep learning-based Metaheuristic Weighted K-Nearest Neighbor Algorithm for the severity classification of breast Cancer. IRBM, 44(3), 100749.

    Article  Google Scholar 

  101. Trang, N. T. H., Long, K. Q., An, P. L., & Dang, T. N. (2023). Developing an Artificial Intelligence-based breast Cancer detection model by combining mammograms and Medical Health Records. Diagnostics, 13(3), 346.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chaddad, A., Tan, G., Liang, X., Hassan, L., Rathore, S., Desrosiers, C., … Niazi,T. (2023). Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers, 15(15), 3839.

  103. Ghaffar Nia, N., Kaplanoglu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 3(1), 5.

    Article  PubMed Central  Google Scholar 

  104. Kaplanoglu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 3(1).

  105. Joudar, S. S., Albahri, A. S., Hamid, R. A., Zahid, I. A., Alqaysi, M. E., Albahri, O. S., & Alamoodi, A. H. (2023). Artificial intelligence-based approaches for improving the diagnosis, triage, and prioritization of autism spectrum disorder: A systematic review of current trends and open issues. Artificial Intelligence Review, 1–65.

  106. Yang, L., Feng, H., Ai, S., Liu, Y., Lei, B., Chen, J., … Zhang, J. (2023). Association of accelerometer-derived circadian abnormalities and genetic risk with incidence of atrial fibrillation. NPJ digital medicine, 6(1), 31.

  107. Barkaoui, A., Ait Oumghar, I., & Ben Kahla, R. (2021). Review on the use of medical imaging in orthopedic biomechanics: Finite element studies. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(5), 535–554.

    Google Scholar 

  108. Gupta, D. S. K., & Artono, B. (2022). Bioengineering in the development of Artificial hips, knees, and other joints. Ultrasound, MRI, and other medical imaging techniques. TTIRAS, 2(2), 10–15.

    Article  Google Scholar 

  109. Fleps, I., & Morgan, E. F. (2022). A review of CT-Based fracture risk Assessment with Finite element modeling and machine learning. Current Osteoporosis Reports, 20(5), 309–319.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rogers, T., Campbell-Washburn, A. E., Ramasawmy, R., Yildirim, D. K., Bruce, C. G.,Grant, L. P., … Lederman, R. J. (2023). Interventional cardiovascular magnetic resonance:state-of-the-art. Journal of Cardiovascular Magnetic Resonance, 25(1), 48.

  111. Smak Gregoor, A. M., Sangers, T. E., Bakker, L. J., Hollestein, L., Uyl–de Groot, C. A., Nijsten, T., & Wakkee, M. (2023). An artificial intelligence-based app for skin cancer detection evaluated in a population-based setting. NPJ Digital Medicine, 6(1), 90.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Babaiha, N. S., Elsayed, H., Zhang, B., Kaladharan, A., Sethumadhavan, P., Schultz,B., … Hofmann-Apitius, M. (2023). A Natural Language Processing System for the Efficient Updating of Highly Curated Pathophysiology Mechanism Knowledge Graphs. Artificial Intelligence in the Life Sciences, 100078.

  113. Martinez-Gonzalez, L., & Martinez, A. (2023). Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opinion on Investigational Drugs, 32(2), 141–160.

    Article  CAS  PubMed  Google Scholar 

  114. Wang, J., Luo, Y., Wang, Z., Hounye, A. H., Cao, C., Hou, M., & Zhang, J. (2023). A cell phone app for facial acne severity assessment. Applied Intelligence, 53(7), 7614–7633.

    Article  PubMed  Google Scholar 

  115. Yang, Z., & Wang, Y. (2022, July). Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT. In 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 125–130). IEEE.

  116. Hu, W., Li, C., Li, X., Rahaman, M. M., Ma, J., Zhang, Y., … Grzegorzek, M. (2022).GasHisSDB: A new gastric histopathology image dataset for computer-aided diagnosis of gastric cancer. Computers in biology and medicine, 142, 105207.

  117. Lu, Y., Li, K., Pu, B., Tan, Y., & Zhu, N. (2022). A YOLOX-based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in fetal ultrasound images. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

  118. Paluru, N., Dayal, A., Jenssen, H. B., Sakinis, T., Cenkeramaddi, L. R., Prakash, J., & Yalavarthy, P. K. (2021). Anam-Net: Anamorphic depth embedding-based lightweight CNN for detecting COVID-19 chest CT image anomalies. IEEE Transactions on Neural Networks and Learning Systems, 32(3), 932–946.

    Article  PubMed  Google Scholar 

  119. Bruns, S., Wolterink, J. M., van den Boogert, T. P., Runge, J. H., Bouma, B. J., Henriques,J. P., … Išgum, I. (2022). Deep learning-based whole-heart segmentation in 4D contrast-enhanced cardiac CT. Computers in biology and medicine, 142, 105191.

  120. Qu, W. F., Tian, M. X., Lu, H. W., Zhou, Y. F., Liu, W. R., Tang, Z., … Shi, Y. H.(2023). Developing a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatology International, 1–15.

  121. Zheng, Q., Yang, R., Xu, H., Fan, J., Jiao, P., Ni, X., … Liu, X. (2023). A Weakly Supervised Deep Learning Model and Human–Machine Fusion for Accurate Grading of Renal Cell Carcinoma from Histopathology Slides. Cancers, 15(12), 3198.

  122. Pan, X., Lin, H., Han, C., Feng, Z., Wang, Y., Lin, J., … Liu, Z. (2022). Computerized tumor-infiltrating lymphocyte density score predicts survival of patients with resectable lung adenocarcinoma. Iscience, 25(12).

  123. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., & Nandi, A. K. (2022b). Medical image segmentation using deep learning: A survey. IET Image Processing, 16(5), 1243–1267.

    Article  Google Scholar 

  124. Popescu, D., Deaconu, M., Ichim, L., & Stamatescu, G. (2021, June). Retinal blood vessel segmentation using pix2pix gan. In 2021 29th Mediterranean Conference on Control and Automation (MED) (pp. 1173–1178). IEEE.

  125. Al-Masni, M. A., Kim, W. R., Kim, E. Y., Noh, Y., & Kim, D. H. (2021). 3D multi-scale residual network toward lacunar infarcts identification from MR images with minimal user intervention. Ieee Access : Practical Innovations, Open Solutions, 9, 11787–11797.

    Article  Google Scholar 

  126. Meenigea, N., & Kolla, V. R. K. (2023). Exploring the current Landscape of Artificial Intelligence in Healthcare. International Journal of Sustainable Development in Computing Science, 1(1).

  127. Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, research issues and applications of artificial intelligence in language education. Educational Technology & Society, 26(1), 112–131.

    Google Scholar 

  128. Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., & Acharya, U. R. (2023). Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1485.

  129. Zhou, Z., Zahid, U., Majeed, Y., Mustafa, S., Sajjad, M. M., Butt, H. D., & Fu, L. (2023). Advancement in artificial intelligence for on-farm fruit sorting and transportation. Frontiers in Plant Science, 14, 1082860.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lu, S., Liu, M., Yin, L., Yin, Z., Liu, X., & Zheng, W. (2023). The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Computer Science, 9, e1400.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhu, Z., Lin, K., Jain, A. K., & Zhou, J. (2023). Transfer learning in deep reinforcement learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  132. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb,S. N., … Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689.

  133. Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., … Uhlig,S. (2022). AI for next-generation computing: Emerging trends and future directions.Internet of Things, 19, 100514.

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the Jilin Provincial Department of Science and Technology Project (No. 20230204098YY), Development of Intelligent LED Display Medical Imaging Consultation System and Equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Teng.

Ethics declarations

Ethical Approval

No human or animal participants are involved in this study, so informed consent is not applicable.

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, L., Yang, J. et al. Role of Artificial Intelligence in Medical Image Analysis: A Review of Current Trends and Future Directions. J. Med. Biol. Eng. (2024). https://doi.org/10.1007/s40846-024-00863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-024-00863-x

Keywords

Navigation