Skip to main content
Log in

Frequency Domain Analysis of Hamstring Activation During Jump-Landing Performance by Athletes with Diverse Training Regimens

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

This study investigated hamstring activation in the frequency domain and jump-landing performance in a specialized-training athletic population and a healthy control group.

Methods

Thirty male athletes engaged in power training, both with and without jumping sports, or endurance training, together with ten healthy participants were recruited. Surface EMG electrodes were attached to the bellies of the lateral hamstring (LH) and medial hamstring (MH). The median EMG frequency was analyzed during takeoff, flight, before ground contact, after ground contact, and landing in countermovement jumps (CMJ) and drop-vertical jumps (DJ). Kinetic outcomes were also investigated.

Results

The power-trained athletes (with and without jumping sports) exhibited a lower median EMG frequency in the MH during takeoff (p = 0.001 for DJ) and in the LH (p = 0.008 for DJ) and MH during landing (p = 0.004 for CMJ and 0.001 for DJ) compared with the endurance-trained or control groups. Furthermore, the power-trained group demonstrated greater jump heights (p = 0.009 for CMJ and p = 0.003 for DJ). All the athletic groups showed a lower landing force (p = 0.022) and loading rate (p = 0.043) in CMJ than the control group.

Conclusion

Training background differences influenced hamstring recruitment during jumping. Power-trained athletes exhibited a lower median EMG frequency and better jumping performance. All the athletes demonstrated a more effective landing strategy than the control group. These findings suggest the potential for enhancing athletic performance and aiding in landing strategy by exploiting different training styles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The raw or processed data can be made available upon request that is deemed reasonable.

References

  1. Blaauw, B., Schiaffino, S., & Reggiani, C. (2013). Mechanisms modulating skeletal muscle phenotype. Comprehensive Physiology, 3(4), 1645–1687. https://doi.org/10.1002/cphy.c130009

    Article  PubMed  Google Scholar 

  2. Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: shifting perspectives. Sports (Basel), 9(9), 127. https://doi.org/10.3390/sports9090127

    Article  PubMed  Google Scholar 

  3. Wilson, J. M., Loenneke, J. P., Jo, E., Wilson, G. J., Zourdos, M. C., & Kim, J. S. (2012). The effects of endurance, strength, and power training on muscle fiber type shifting. Journal of Strength and Conditioning Research, 26(6), 1724–1729. https://doi.org/10.1519/JSC.0b013e318234eb6f

    Article  PubMed  Google Scholar 

  4. Degens, H., Stasiulis, A., Skurvydas, A., Statkeviciene, B., & Venckunas, T. (2019). Physiological comparison between non-athletes, endurance, power and team athletes. European Journal of Applied Physiology, 119(6), 1377–1386. https://doi.org/10.1007/s00421-019-04128-3

    Article  PubMed  Google Scholar 

  5. Loturco, I., Gil, S., Laurino, C. F., Roschel, H., Kobal, R., Cal Abad, C. C., et al. (2015). Differences in muscle mechanical properties between elite power and endurance athletes: A comparative study. Journal of Strength and Conditioning Research, 29(6), 1723–1728. https://doi.org/10.1519/jsc.0000000000000803

    Article  PubMed  Google Scholar 

  6. Afonso, J., Rocha-Rodrigues, S., Clemente, F. M., Aquino, M., Nikolaidis, P. T., Sarmento, H., et al. (2021). The hamstrings: anatomic and physiologic variations and their potential relationships with injury risk. Frontiers in Physiology, 12, 694604. https://doi.org/10.3389/fphys.2021.694604

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avrillon, S., Lacourpaille, L., Hug, F., Le Sant, G., Frey, A., Nordez, A., et al. (2020). Hamstring muscle elasticity differs in specialized high-performance athletes. Scandinavian Journal of Medicine and Science in Sports, 30(1), 83–91. https://doi.org/10.1111/sms.13564

    Article  PubMed  Google Scholar 

  8. Kawama, R., Okudaira, M., Shimasaki, T., Maemura, H., & Tanigawa, S. (2021). Sub-elite sprinters and rugby players possess different morphological characteristics of the individual hamstrings and quadriceps muscles. PLoS ONE, 16(10), e0259039. https://doi.org/10.1371/journal.pone.0259039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pedley, J. S., Lloyd, R. S., Read, P. J., Moore, I. S., De Ste Croix, M., Myer, G. D., et al. (2020). Utility of kinetic and kinematic jumping and landing variables as predictors of injury risk: A systematic review. J Sci Sport Exerc, 2(4), 287–304. https://doi.org/10.1007/s42978-020-00090-1

    Article  Google Scholar 

  10. Dewig, D. R., Goodwin, J. S., Pietrosimone, B. G., & Blackburn, J. T. (2020). Associations among eccentric hamstrings strength, hamstrings stiffness, and jump-landing biomechanics. Journal of Athletic Training, 55(7), 717–723. https://doi.org/10.4085/1062-6050-151-19

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blackburn, J. T., Norcross, M. F., Cannon, L. N., & Zinder, S. M. (2013). Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading. Journal of Athletic Training, 48(6), 764–772. https://doi.org/10.4085/1062-6050-48.4.01

    Article  PubMed  PubMed Central  Google Scholar 

  12. Krommes, K., Jakobsen, M. D., Bandholm, T., Andersen, L. L., Zebis, M., Shield, A., et al. (2021). Cross-sectional study of EMG and EMG rise during fast and slow hamstring exercises. International Journal of Sports Physical Therapy, 16(4), 1033–1042. https://doi.org/10.26603/001c.25364

  13. Suskens, J. J. M., Maas, H., van Dieën, J. H., Kerkhoffs, G., Goedhart, E. A., Tol, J. L., et al. (2023). The effect of the Nordic hamstring exercise on muscle activity: A multichannel electromyography randomized controlled trial. Journal of Applied Biomechanics, 39(6), 377–387. https://doi.org/10.1123/jab.2023-0037

    Article  PubMed  Google Scholar 

  14. Váczi, M., Fazekas, G., Pilissy, T., Cselkó, A., Trzaskoma, L., Sebesi, B., et al. (2022). The effects of eccentric hamstring exercise training in young female handball players. European Journal of Applied Physiology, 122(4), 955–964. https://doi.org/10.1007/s00421-022-04888-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Massó, N., Rey, F., Romero, D., & Gual, G. (2010). Surface electromyography applications in the sport. Apunts Med Esport, 45(168), 127–136.

    Article  Google Scholar 

  16. Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 39(8), 7420–7431. https://doi.org/10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  17. Phinyomark, A. T., S., Hu, H., Phukpattaranont, P., & Limsakul, C. (2012) The usefulness of mean and median frequencies in electromyography analysis. In: Naik GR (Ed.), Computational intelligence in electromyography analysis – A perspective on current applications and future challenges (pp. 195–220). IntechOpen.

  18. Chan, C. K., Timothy, G. F., & Yeow, C. H. (2016). Comparison of mean frequency and median frequency in evaluating muscle fiber type selection in varying gait speed across healthy young adult individuals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2016, 1725–8. https://doi.org/10.1109/embc.2016.7591049

    Article  CAS  PubMed  Google Scholar 

  19. Jankaew, A., Jan, Y. K., Hwang, I. S., Kuo, L. C., & Lin, C. F. (2023). Hamstring muscle stiffness affects lower extremity muscle recruitment and landing forces during double-legs vertical jump. Sports Biomechanics. Advance online publication. https://doi.org/10.1080/14763141.2023.2219670

  20. Solomonow, M., Baten, C., Smit, J., Baratta, R., Hermens, H., D’Ambrosia, R., et al. (1990). Electromyogram power spectra frequencies associated with motor unit recruitment strategies. Journal of Applied Physiology, 68(3), 1177–1185. https://doi.org/10.1152/jappl.1990.68.3.1177

    Article  CAS  PubMed  Google Scholar 

  21. Conceição, M., Cadore, E. L., González-Izal, M., Izquierdo, M., Liedtke, G. V., Wilhelm, E. N., et al. (2014). Strength training prior to endurance exercise: impact on the neuromuscular system, endurance performance and cardiorespiratory responses. J Hum Kinet, 44, 171–81. https://doi.org/10.2478/hukin-2014-0123

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, M. H., Chen, K. C., Hung, M. H., Chang, C. Y., Ho, C. S., Chang, C. H., et al. (2020). Effects of plyometric training on surface electromyographic activity and performance during blocking jumps in college division I men’s volleyball athletes. Applied Sciences, 10(13), 4535. https://doi.org/10.3390/app10134535

    Article  CAS  Google Scholar 

  23. Guan, S., Lin, N., Yin, Y., Liu, H., Liu, L., & Qi, L. (2021). The effects of inter-set recovery time on explosive power, electromyography activity, and tissue oxygenation during plyometric training. Sensors, 21(9), 3015. https://doi.org/10.3390/s21093015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., et al. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.Mss.0000078924.61453.Fb

    Article  PubMed  Google Scholar 

  25. Ramirez-Campillo, R., Sortwell, A., Moran, J., Afonso, J., Clemente, F. M., Lloyd, R. S., et al. (2023). Plyometric-jump training effects on physical fitness and sport-specific performance according to maturity: A systematic review with meta-analysis. Sports Medicine Open, 9(1), 23. https://doi.org/10.1186/s40798-023-00568-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kobal, R., Nakamura, F. Y., Kitamura, K., Cal Abad, C. C., Pereira, L. A., & Loturco, I. (2017). Vertical and depth jumping performance in elite athletes from different sports specialties. Science & Sports, 32(5), e191–e196. https://doi.org/10.1016/j.scispo.2017.01.007

    Article  Google Scholar 

  27. Ramírez-delaCruz, M., Bravo-Sánchez, A., Esteban-García, P., Jiménez, F., & Abián-Vicén, J. (2022). Effects of plyometric training on lower body muscle architecture, tendon structure, stiffness and physical performance: A systematic review and meta-analysis. Sports Medicine Open, 8(1), 40. https://doi.org/10.1186/s40798-022-00431-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilder, J. N., Riggins, E. R., Noble, R. A., Lelito, C. M., Widenhoefer, T. L., & Almonroeder, T. G. (2020). The effects of drop vertical jump technique on landing and jumping kinetics and jump performance. Journal of Electromyography and Kinesiology, 56, 102504. https://doi.org/10.1016/j.jelekin.2020.102504

    Article  PubMed  Google Scholar 

  29. Stensrud, S., Myklebust, G., Kristianslund, E., Bahr, R., & Krosshaug, T. (2011). Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players. British Journal of Sports Medicine, 45(7), 589–595. https://doi.org/10.1136/bjsm.2010.078287

    Article  PubMed  Google Scholar 

  30. Jankaew, A., Jan, Y. K., Hwang, I. S., Kuo, L. C., & Lin, C. F. (2023). Hamstring activation deficits in different jumping directions in athletes with a history of hamstring strain injuries: A cross-sectional laboratory study. Sports Biomechanics. Advance online publication. https://doi.org/10.1080/14763141.2023.2236074

  31. Sole, G., Milosavljevic, S., Nicholson, H., & Sullivan, S. J. (2012). Altered muscle activation following hamstring injuries. British Journal of Sports Medicine, 46(2), 118–123. https://doi.org/10.1136/bjsm.2010.079343

    Article  PubMed  Google Scholar 

  32. Paterno, M. V., Ford, K. R., Myer, G. D., Heyl, R., & Hewett, T. E. (2007). Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine, 17(4), 258–262. https://doi.org/10.1097/JSM.0b013e31804c77ea

    Article  PubMed  Google Scholar 

  33. Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69(11), 1998–2204. https://doi.org/10.1119/1.1397460

    Article  Google Scholar 

  34. Turner, A. N., & Jeffreys, I. (2010). The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength & Conditioning Journal, 32, 87–99. https://doi.org/10.1519/SSC.0b013e3181e928f9

    Article  Google Scholar 

  35. Qaisar, R., Bhaskaran, S., & Van Remmen, H. (2016). Muscle fiber type diversification during exercise and regeneration. Free Radical Biology and Medicine, 98, 56–67. https://doi.org/10.1016/j.freeradbiomed.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  36. Methenitis, S., Karandreas, N., Spengos, K., Zaras, N., Stasinaki, A. N., & Terzis, G. (2016). Muscle fiber conduction velocity, muscle fiber composition, and power performance. Medicine and Science in Sports and Exercise, 48(9), 1761–1771. https://doi.org/10.1249/mss.0000000000000954

    Article  PubMed  Google Scholar 

  37. Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology (1985), 101(6), 1766–1775. https://doi.org/10.1152/japplphysiol.00543.2006

  38. Jurasz, M., Boraczyński, M., Wójcik, Z., & Gronek, P. (2022). Neuromuscular fatigue responses of endurance- and strength-trained athletes during incremental cycling exercise. International Journal of Environmental Research and Public Health, 19(14), 8839. https://doi.org/10.3390/ijerph19148839

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manske, R., & Reiman, M. (2013). Functional performance testing for power and return to sports. Sports Health, 5(3), 244–250. https://doi.org/10.1177/1941738113479925

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bagley, L., McPhee, J. S., Ganse, B., Müller, K., Korhonen, M. T., Rittweger, J., et al. (2019). Similar relative decline in aerobic and anaerobic power with age in endurance and power master athletes of both sexes. Scandinavian Journal of Medicine and Science in Sports, 29(6), 791–799. https://doi.org/10.1111/sms.13404

    Article  PubMed  Google Scholar 

  41. Methenitis, S., Spengos, K., Zaras, N., Stasinaki, A. N., Papadimas, G., Karampatsos, G., et al. (2019). Fiber type composition and rate of force development in endurance- and resistance-trained individuals. Journal of Strength and Conditioning Research, 33(9), 2388–2397. https://doi.org/10.1519/jsc.0000000000002150

    Article  PubMed  Google Scholar 

  42. O’Connor, K. M., Johnson, C., & Benson, L. C. (2015). The effect of isolated hamstrings fatigue on landing and cutting mechanics. Journal of Applied Biomechanics, 31(4), 211–220. https://doi.org/10.1123/jab.2014-0098

    Article  PubMed  Google Scholar 

  43. Maniar, N., Carmichael, D. S., Hickey, J. T., Timmins, R. G., San Jose, A. J., Dickson, J., et al. (2023). Incidence and prevalence of hamstring injuries in field-based team sports: A systematic review and meta-analysis of 5952 injuries from over 7 million exposure hours. British Journal of Sports Medicine, 57(2), 109–116. https://doi.org/10.1136/bjsports-2021-104936

    Article  PubMed  Google Scholar 

  44. Cross, K. M., Gurka, K. K., Saliba, S., Conaway, M., & Hertel, J. (2013). Comparison of hamstring strain injury rates between male and female intercollegiate soccer athletes. American Journal of Sports Medicine, 41(4), 742–748. https://doi.org/10.1177/0363546513475342

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Motion Analysis Laboratory, Department of Biomedical Engineering, National Cheng Kung University, Taiwan, for providing the laboratory space and necessary equipment for the successful completion of this study.

Funding

The study was partially funded by the National Science & Technology Council, Taiwan (NSTC 112-2314-B-006-038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Feng Lin.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Ethical Approval

The experimental procedure was approved by the Research Ethics Committee of National Cheng Kung University Hospital under ethical approval number A-ER-110–075. All the participants provided written informed consent prior to participating in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankaew, A., Jan, YK. & Lin, CF. Frequency Domain Analysis of Hamstring Activation During Jump-Landing Performance by Athletes with Diverse Training Regimens. J. Med. Biol. Eng. (2024). https://doi.org/10.1007/s40846-024-00857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-024-00857-9

Keywords

Navigation