Skip to main content

Advertisement

Log in

Honeybee Silk and Chitosan: A Promising Biocomposite for Wound Healing Applications

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Biopolymeric materials, especially composites, are extensively used as wound healing scaffolds in tissue engineering due to their ability to mimic the essential properties of the native tissue. This research aims to investigate the usability of honeybee silk (HS), which could be an alternative silk source to silkworm silk, in tissue engineering (TE) applications. HS, which has not been used in scaffold fabrication, and chitosan (CH), frequently used in TE, were combined to produce a novel and cost-effective biocompatible CH–HS scaffold.

Methods

HS, CH and CH–HS were characterized using XRD, FTIR and SEM to determine structure and functional groups. SEM analysis was performed for different CH concentrations (0.5%, 1% and 2%) and different ratios of CH:HS (1:2, 1:1 and 2:1, respectively). The antioxidant properties, antibacterial activity and as well as biofilm formation and ability to destroy mature biofilm activity of HS and CH–HS were shown. The human breast cancer MDA-MB231 cells were used to investigate possible effects on cell viability proliferation.

Results

The smallest pore size was determined to be 70.7 µm on average at a ratio of 1:1 at 1% CH concentration. The antioxidant properties of HS and CH–HS were shown. The CH–HS showed antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, as well as inhibition of biofilm formation and destruction of mature biofilm. Additionally, the MDA-MB-231 cells appeared significantly elongated and denser when seeded on the CH–HS over 24 h and 48 h.

Conclusion

This study demonstrated the usability of honeybee silk, a promising but underutilized material, tissue engineering and its potential for future studies. Considering the materials used and our promising results, the synthesized CH–HS scaffold was observed to have microbiological and cellular effects that may be useful in future biomedical applications for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data are available on reasonable request.

References

  1. Di Silvio, L. (2007). 15—Bone tissue engineering and biomineralization. In A. R. Boccaccini & J. E. Gough (Eds.), Tissue engineering using ceramics and polymers (pp. 319–331). Woodhead Publishing.

    Chapter  Google Scholar 

  2. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926. https://doi.org/10.1126/science.8493529

    Article  CAS  PubMed  Google Scholar 

  3. Pearson, R. G., Bhandari, R., Quirk, R. A., & Shakesheff, K. M. (2017). Recent advances in tissue engineering. Journal of Long-Term Effects of Medical Implants, 27, 199–231. https://doi.org/10.1615/JLongTermEffMedImplants.v27.i2-4.70

    Article  CAS  PubMed  Google Scholar 

  4. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2, 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257

    Article  PubMed  Google Scholar 

  5. Olson, J. L., Atala, A., & Yoo, J. J. (2011). Tissue engineering: Current strategies and future directions. Chonnam Medical Journal, 47, 1–13. https://doi.org/10.4068/cmj.2011.47.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  7. Litowczenko, J., Woźniak-Budych, M. J., Staszak, K., Wieszczycka, K., Jurga, S., & Tylkowski, B. (2021). Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioactive Materials, 6, 2412–2438. https://doi.org/10.1016/j.bioactmat.2021.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12, 735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Himdani, S., Jessop, Z. M., Al-Sabah, A., Combellack, E., Ibrahim, A., Doak, S. H., Hart, A. M., Archer, C. W., Thornton, C. A., & Whitaker, I. S. (2017). Tissue-engineered solutions in plastic and reconstructive surgery: Principles and practice. Frontiers in Surgery, 4, 4. https://doi.org/10.3389/fsurg.2017.00004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fasiku, V. O., Omolo, C. A., Devnarain, N., Ibrahim, U. H., Rambharose, S., Faya, M., Mocktar, C., Singh, S. D., & Govender, T. (2021). Chitosan-based hydrogel for the dual delivery of antimicrobial agents against bacterial methicillin-resistant Staphylococcus aureus biofilm-infected wounds. ACS Omega, 6, 21994–22010. https://doi.org/10.1021/acsomega.1c02547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishani, M., Shin, W. Y., Suhaimi, H., & Sambudi, N. S. (2023). Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review. Gels, 9, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nardo, T., Carmagnola, I., Ruini, F., Caddeo, S., Calzone, S., Chiono, V., & Ciardelli, G. (2017). Chapter 65—Synthetic biomaterial for regenerative medicine applications. In G. Orlando, G. Remuzzi, & D. F. Williams (Eds.), Kidney transplantation, bioengineering and regeneration (pp. 901–921). Academic Press.

    Chapter  Google Scholar 

  13. Jenkins, T. L., & Little, D. (2019). Synthetic scaffolds for musculoskeletal tissue engineering: Cellular responses to fiber parameters. NPJ Regenerative Medicine, 4, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jensen, G., Morrill, C., & Huang, Y. (2018). 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharmaceutica Sinica B, 8, 756–766. https://doi.org/10.1016/j.apsb.2018.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee, D. H., Kim, W., Song, J. E., & Khang, G. (2022). Chapter 14—Prospects of collagen scaffolds for muscle regeneration. In C. P. Sharma, T. Chandy, V. Thomas, & F. G. Thankam (Eds.), Tissue engineering (pp. 347–361). Academic Press.

    Chapter  Google Scholar 

  16. Sanchez-Rubio, A., Jayawarna, V., Maxwell, E., Dalby, M. J., & Salmeron-Sanchez, M. (2023). Keeping it organized: Multicompartment constructs to mimic tissue heterogeneity. Advanced Healthcare Materials, 12, 2202110.

    Article  CAS  Google Scholar 

  17. He, W., & Benson, R. (2017). Polymeric biomaterials. In W. He & R. Benson (Eds.), Applied plastics engineering handbook (pp. 145–164). Elsevier.

    Chapter  Google Scholar 

  18. Negut, I., Dorcioman, G., & Grumezescu, V. (2020). Scaffolds for wound healing applications. Polymers, 12, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qu, H., Fu, H., Han, Z., & Sun, Y. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances, 9, 26252–26262. https://doi.org/10.1039/c9ra05214c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arif, M. M., Khan, S. M., Gull, N., Tabish, T. A., Zia, S., Khan, R. U., Awais, S. M., & Butt, M. A. (2021). Polymer-based biomaterials for chronic wound management: Promises and challenges. International Journal of Pharmaceutics, 598, 120270.

    Article  Google Scholar 

  21. Das, P., Manna, S., Roy, S., Nandi, S. K., & Basak, P. (2023). Polymeric biomaterials-based tissue engineering for wound healing: A systemic review. Burns & Trauma. https://doi.org/10.1093/burnst/tkac058

    Article  Google Scholar 

  22. Kohane, D. S., & Langer, R. (2008). Polymeric biomaterials in tissue engineering. Pediatric Research, 63, 487–491.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X., Ma, L., Mao, Z., & Gao, C. (2011). Chitosan-based biomaterials for tissue repair and regeneration. Chitosan for Biomaterials, II, 81–127.

    Article  Google Scholar 

  24. Niculescu, A.-G., & Grumezescu, A. M. (2022). An up-to-date review of biomaterials application in wound management. Polymers, 14, 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel, D. K., Dutta, S. D., Hexiu, J., Ganguly, K., & Lim, K.-T. (2022). 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydrate Polymers, 281, 119077. https://doi.org/10.1016/j.carbpol.2021.119077

    Article  CAS  PubMed  Google Scholar 

  26. Farokhi, M., Mottaghitalab, F., Fatahi, Y., Saeb, M. R., Zarrintaj, P., Kundu, S. C., & Khademhosseini, A. (2019). Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 115, 251–267. https://doi.org/10.1016/j.eurpolymj.2019.03.035

    Article  CAS  Google Scholar 

  27. Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65, 457–470. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  28. Chouhan, D., & Mandal, B. B. (2020). Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomaterialia, 103, 24–51. https://doi.org/10.1016/j.actbio.2019.11.050

    Article  CAS  PubMed  Google Scholar 

  29. Hepburn, H. R., Duangphakdee, O., & Pirk, C. W. (2013). Physical properties of honeybee silk: A review. Apidologie, 44, 600–610.

    Article  CAS  Google Scholar 

  30. Kumar, M., Jain, D., Bhardwaj, N., Gupta, P., Nandi, S. K., & Mandal, B. B. (2016). Native honeybee silk membrane: A potential matrix for tissue engineering and regenerative medicine. RSC Advances, 6, 54394–54403. https://doi.org/10.1039/C6RA10738A

    Article  CAS  Google Scholar 

  31. Hepburn, H. R., & Kurstjens, S. (1988). The combs of honeybees as composite materials. Apidologie, 19, 25–36.

    Article  Google Scholar 

  32. Zhang, K., Si, F. W., Duan, H. L., & Wang, J. (2010). Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia, 6, 2165–2171. https://doi.org/10.1016/j.actbio.2009.12.030

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, N., & Yang, Y. (2015). Honeybee silks. In N. Reddy & Y. Yang (Eds.), Innovative biofibers from renewable resources (pp. 201–203). Springer.

    Chapter  Google Scholar 

  34. Tuwalska, A., Grabska-Zielińska, S., & Sionkowska, A. (2022). Chitosan/silk fibroin materials for biomedical applications—A review. Polymers, 14, 1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kavaz, D., Idris, M., & Onyebuchi, C. (2019). Physiochemical characterization, antioxidative, anticancer cells proliferation and food pathogens antibacterial activity of chitosan nanoparticles loaded with Cyperus articulatus rhizome essential oils. International Journal of Biological Macromolecules, 123, 837–845. https://doi.org/10.1016/j.ijbiomac.2018.11.177

    Article  CAS  PubMed  Google Scholar 

  36. Li, D.-W., Lei, X., He, F.-L., He, J., Liu, Y.-L., Ye, Y.-J., Deng, X., Duan, E., & Yin, D.-C. (2017). Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. International Journal of Biological Macromolecules, 105, 584–597.

    Article  CAS  PubMed  Google Scholar 

  37. Al-Bakri, A. G., & Afifi, F. U. (2007). Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. Journal of Microbiological Methods, 68, 19–25. https://doi.org/10.1016/j.mimet.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  38. Bali, E. B., Türkmen, K. E., Erdönmez, D., & Sağlam, N. (2019). Comparative study of inhibitory potential of dietary phytochemicals against quorum sensing activity of and biofilm formation by Chromobacterium violaceum 12472, and swimming and swarming behaviour of Pseudomonas aeruginosa PAO1. Food technology and biotechnology, 57, 212–221. https://doi.org/10.17113/ftb.57.02.19.5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sivaraj, C., Aashinya, Y., Sripriya, R., & Arumugam, P. (2018). Antioxidant activities and thin layer chromatographic analysis of aqueous extract of tubers of Drynaria quercifolia (L). J. Sm, Free Radicals and Antioxidants, 8, 26–31.

    CAS  Google Scholar 

  40. Perumal, A., Krishna, S., & Madhusree, M. (2018). GC-MS analysis, antioxidant and antibacterial activities of ethanol extract of leaves of Aegle marmelos (L.) corraša. Journal of Drug Delivery and Therapeutics, 8, 247–255.

    Article  CAS  Google Scholar 

  41. Li, M., Liang, Y., He, J., Zhang, H., & Guo, B. (2020). Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chemistry of Materials, 32, 9937–9953. https://doi.org/10.1021/acs.chemmater.0c02823

    Article  CAS  Google Scholar 

  42. Hu, L., Zou, L., Liu, Q., Geng, Y., Xu, G., Chen, L., Pan, P., & Chen, J. (2022). Construction of chitosan-based asymmetric antioxidant and anti-inflammatory repair film for acceleration of wound healing. International Journal of Biological Macromolecules, 215, 377–386. https://doi.org/10.1016/j.ijbiomac.2022.06.103

    Article  CAS  PubMed  Google Scholar 

  43. Gianak, O., Pavlidou, E., Sarafidis, C., Karageorgiou, V., & Deliyanni, E. (2018). Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separations, 5, 25.

    Article  Google Scholar 

  44. Singh, V., Tripathi, D. K., Sharma, V. K., Srivastava, D., Kumar, U., Poluri, K. M., Singh, B. N., Kumar, D., & Venkatesh Kumar, R. (2023). Silk fibroin hydrogel: A novel biopolymer for sustained release of vancomycin drug for diabetic wound healing. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2023.135548

    Article  Google Scholar 

  45. Weisman, S., Haritos, V. S., Church, J. S., Huson, M. G., Mudie, S. T., Rodgers, A. J., Dumsday, G. J., & Sutherland, T. D. (2010). Honeybee silk: Recombinant protein production, assembly and fiber spinning. Biomaterials, 31, 2695–2700.

    Article  CAS  PubMed  Google Scholar 

  46. Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion & Migration, 4, 377–381. https://doi.org/10.4161/cam.4.3.11747

    Article  Google Scholar 

  47. Zeng, S., Liu, L., Shi, Y., Qiu, J., Fang, W., Rong, M., Guo, Z., & Gao, W. (2015). Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. PLoS ONE, 10, e0128658. https://doi.org/10.1371/journal.pone.0128658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vishwanath, V., Pramanik, K., & Biswas, A. (2016). Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Journal of Biomaterials Science Polymer edition, 27, 657–674. https://doi.org/10.1080/09205063.2016.1148303

    Article  CAS  PubMed  Google Scholar 

  49. Kweon, H., Ha, H. C., Um, I. C., & Park, Y. H. (2001). Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science, 80, 928–934. https://doi.org/10.1002/app.1172

    Article  CAS  Google Scholar 

  50. Huang, Y., Zhang, B., Xu, G., & Hao, W. (2013). Swelling behaviours and mechanical properties of silk fibroin–polyurethane composite hydrogels. Composites Science and Technology, 84, 15–22. https://doi.org/10.1016/j.compscitech.2013.05.007

    Article  CAS  Google Scholar 

  51. Azmy, E. A. M., Hashem, H. E., Mohamed, E. A., & Negm, N. A. (2019). Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. Journal of Molecular Liquids, 284, 748–754. https://doi.org/10.1016/j.molliq.2019.04.054

    Article  CAS  Google Scholar 

  52. Lin, Y.-J., Lee, G.-H., Chou, C.-W., Chen, Y.-P., Wu, T.-H., & Lin, H.-R. (2015). Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. Journal of Materials Chemistry B, 3, 1931–1941.

    Article  CAS  PubMed  Google Scholar 

  53. Moradi, S., Nazarian, S., Milan, P. B., Nilforoushzadeh, M. A., & Zargan, J. (2023). Silk fibroin based core-shell nanofibers loaded with ZnO nanoparticles: An ideal candidate for designing a medicated wound dressing. Journal of Medical and Biological Engineering, 43, 689–705.

    Article  Google Scholar 

  54. Khosravimelal, S., Chizari, M., Farhadihosseinabadi, B., Moosazadeh Moghaddam, M., & Gholipourmalekabadi, M. (2021). Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. Journal of Materials Science: Materials in Medicine, 32, 114. https://doi.org/10.1007/s10856-021-06542-6

    Article  CAS  PubMed  Google Scholar 

  55. Cai, Z.-X., Mo, X.-M., Zhang, K.-H., Fan, L.-P., Yin, A.-L., He, C.-L., & Wang, H.-S. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International Journal of Molecular Sciences, 11, 3529–3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eivazzadeh-Keihan, R., Radinekiyan, F., Aliabadi, H. A. M., Sukhtezari, S., Tahmasebi, B., Maleki, A., & Madanchi, H. (2021). Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Scientific Reports, 11, 650. https://doi.org/10.1038/s41598-020-80133-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liang, Y., Liang, Y., Zhang, H., & Guo, B. (2022). Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 17, 353–384. https://doi.org/10.1016/j.ajps.2022.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  58. Subramani, R., & Jayaprakashvel, M. (2019). Bacterial quorum sensing: biofilm formation, survival behaviour and antibiotic resistance. In P. V. Bramhachari (Ed.), Implication of quorum sensing and biofilm formation in medicine, agriculture and food industry (pp. 21–37). Springer.

    Chapter  Google Scholar 

  59. Sutherland, T. D., Young, J. H., Weisman, S., Hayashi, C. Y., & Merritt, D. J. (2010). Insect silk: One name, many materials. Annual Review of Entomology, 55, 171–188.

    Article  CAS  PubMed  Google Scholar 

  60. Aramwit, P., Napavichayanum, S., Pienpinijtham, P., Rasmi, Y., & Bang, N. (2020). Antibiofilm activity and cytotoxicity of silk sericin against Streptococcus mutans bacteria in biofilm: An in vitro study. Journal of Wound Care, 29, S25–S35.

    Article  PubMed  Google Scholar 

  61. Muthuchamy, M., Govindan, R., Shine, K., Thangasamy, V., Alharbi, N. S., Thillaichidambaram, M., Khaled, J. M., Wen, J.-L., & Alanzi, K. F. (2020). Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydrate Polymers, 230, 115646. https://doi.org/10.1016/j.carbpol.2019.115646

    Article  CAS  PubMed  Google Scholar 

  62. Alrouji, M., Kuriri, F. A., Alqasmi, M. H., AlSudais, H., Alissa, M., Alsuwat, M. A., Asad, M., Joseph, B., & Almuhanna, Y. (2023). A simple in-vivo method for evaluation of antibiofilm and wound healing activity using excision wound model in diabetic Swiss albino mice. Microorganisms, 11, 692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules (Basel, Switzerland), 27, 1326.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, G., Yang, F., Zhou, W., Xiao, N., Luo, M., & Tang, Z. (2023). The initiation of oxidative stress and therapeutic strategies in wound healing. Biomedicine & Pharmacotherapy, 157, 114004. https://doi.org/10.1016/j.biopha.2022.114004

    Article  Google Scholar 

  65. Fitzmaurice, S. D., Sivamani, R. K., & Isseroff, R. R. (2011). Antioxidant therapies for wound healing: A clinical guide to currently commercially available products. Skin Pharmacology and Physiology, 24, 113–126. https://doi.org/10.1159/000322643

    Article  CAS  PubMed  Google Scholar 

  66. Abd El-Hack, M. E., El-Saadony, M. T., Shafi, M. E., Zabermawi, N. M., Arif, M., Batiha, G. E., Khafaga, A. F., Abd El-Hakim, Y. M., & Al-Sagheer, A. A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. International Journal of Biological Macromolecules, 164, 2726–2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153

    Article  CAS  PubMed  Google Scholar 

  67. Schreiber, S. B., Bozell, J. J., Hayes, D. G., & Zivanovic, S. (2013). Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocolloids, 33, 207–214.

    Article  CAS  Google Scholar 

  68. Woranuch, S., & Yoksan, R. (2013). Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydrate Polymers, 96, 495–502.

    Article  CAS  PubMed  Google Scholar 

  69. Saha, J., Mondal, M., Sheikh, M. K., & Habib, M. (2019). Extraction, structural and functional properties of silk sericin biopolymer from Bombyx mori silk cocoon waste. Journal of Textile Science & Engineering. https://doi.org/10.4172/2165-8064.1000390

    Article  Google Scholar 

  70. Selvaraj, S., & Fathima, N. N. (2017). Fenugreek incorporated silk fibroin nanofibers—A potential antioxidant scaffold for enhanced wound healing. ACS Applied Materials & Interfaces, 9, 5916–5926. https://doi.org/10.1021/acsami.6b16306

    Article  CAS  Google Scholar 

  71. Wang, F., Pang, Y., Chen, G., Wang, W., & Chen, Z. (2020). Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydrate Polymers, 229, 115529. https://doi.org/10.1016/j.carbpol.2019.115529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Cancer Research Foundation of TRNC.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sual Tatlisulu: Conceptualization, investigation, methodology, writing—original draft. Erkay Ozgor: Conceptualization, supervision, writing—review and editing. Doga Kavaz: Methodology, supervision, writing—review and editing. Mustafa B. A. Djamgoz: Conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Sual Tatlisulu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

No ethics approval is required for this study.

Consent for Publication

All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatlisulu, S., Ozgor, E., Kavaz, D. et al. Honeybee Silk and Chitosan: A Promising Biocomposite for Wound Healing Applications. J. Med. Biol. Eng. (2024). https://doi.org/10.1007/s40846-024-00853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-024-00853-z

Keywords

Navigation