Skip to main content

Advertisement

Log in

Biocompatible Scaffold Based on Silk Fibroin for Tissue Engineering Applications

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) is a protein with unique properties that make it an ideal scaffold for tissue engineering. Research in this area has improved its advantages by incorporating many other materials during synthetic stages and helping in use of (SF) in broader biomedical application. Silk is gaining popularity as an encouraging bio-sourced raw material due to superior mechanical qualities, flexibility, as well as bioactivity. This review focus on the current advances in silk-founded biologically inspired active and efficient scaffold in medical fields as well as the most recent applications and advancements in the use of SF as a biocompatible material. The authors begun with a short overview of silk, including its origins, characteristics, source, in addition procedures. The findings of this analysis are crucial in aiding designers in making proper design structure as well as the percentage of porosity required in scaffold for the cell’s growth prior to fabrication of the scaffold. Furthermore, SF can be formed into numerous scaffold kinds such as sponges, mats, hydrogels, and films using both traditional and innovative bio-fabrication methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Eder, S. Amini, P. Fratzl, Biological composites—complex structures for functional diversity. Science (80-.) 362(6414), 543–547 (2018). https://doi.org/10.1126/science.aat8297

    Article  Google Scholar 

  2. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089

    Article  Google Scholar 

  3. L. Fuentes-Mera, Scaffolds based on silk fibroin for osteochondral tissue engineering. Res. Dev. Mater. Sci. (2019). https://doi.org/10.31031/rdms.2019.10.000740

    Article  Google Scholar 

  4. A.K. Mohanty, S. Vivekanandhan, J.M. Pin, M. Misra, Composites from renewable and sustainable resources: challenges and innovations. Science (80-.) 362(6414), 536–542 (2018). https://doi.org/10.1126/science.aat9072

    Article  Google Scholar 

  5. R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1700782

    Article  Google Scholar 

  6. C. Li et al., Fiber-Based Biopolymer Processing as a Route toward Sustainability. Adv. Mater. 34(1), 1–27 (2022). https://doi.org/10.1002/adma.202105196

    Article  Google Scholar 

  7. C. Holland, K. Numata, J. Rnjak-Kovacina, F.P. Seib, The biomedical use of silk: past, present, future. Adv. Healthc. Mater. (2019). https://doi.org/10.1002/adhm.201800465

    Article  Google Scholar 

  8. F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science (80-.) 329(5991), 528–531 (2010). https://doi.org/10.1126/science.1188936

    Article  Google Scholar 

  9. X. Hu, D.L. Kaplan, Silk biomaterials. Compr. Biomater. 2, 207–219 (2011). https://doi.org/10.1016/b978-0-08-055294-1.00070-2

    Article  Google Scholar 

  10. T. Lefèvre, M.E. Rousseau, M. Pézolet, Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92(8), 2885–2895 (2007). https://doi.org/10.1529/biophysj.106.100339

    Article  Google Scholar 

  11. Y. Qi et al., A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. (2017). https://doi.org/10.3390/ijms18030237

    Article  Google Scholar 

  12. D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6(10), 1612–1631 (2011). https://doi.org/10.1038/nprot.2011.379

    Article  Google Scholar 

  13. L.D. Koh, J. Yeo, Y.Y. Lee, Q. Ong, M. Han, B.C.K. Tee, Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Mater. Sci. Eng. C 86(January), 151–172 (2018). https://doi.org/10.1016/j.msec.2018.01.007

    Article  Google Scholar 

  14. P.M. Gore, M. Naebe, X. Wang, B. Kandasubramanian, Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 374(May), 437–470 (2019). https://doi.org/10.1016/j.cej.2019.05.163

    Article  Google Scholar 

  15. R. Fedič, M. Žurovec, F. Sehnal, Correlation between fibroin amino acid sequence and physical silk properties. J. Biol. Chem. 278(37), 35255–35264 (2003). https://doi.org/10.1074/jbc.M305304200

    Article  Google Scholar 

  16. M.S. Zafar, D.J. Belton, B. Hanby, D.L. Kaplan, C.C. Perry, Functional material features of Bombyx mori silk light versus heavy chain proteins. Biomacromol 16(2), 606–614 (2015). https://doi.org/10.1021/bm501667j

    Article  Google Scholar 

  17. K. Adarsh Gupta, K. Mita, K.P. Arunkumar, J. Nagaraju, Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama. Sci. Rep. 5, 1–17 (2015). https://doi.org/10.1038/srep12706

    Article  Google Scholar 

  18. S.M. Correa-Garhwal et al., Spidroins and Silk Fibers of Aquatic Spiders. Sci. Rep. 9(1), 1–12 (2019). https://doi.org/10.1038/s41598-019-49587-y

    Article  Google Scholar 

  19. S. Salehi, K. Koeck, T. Scheibel, Spider silk for tissue engineering applications. Molecules (2020). https://doi.org/10.3390/molecules25030737

    Article  Google Scholar 

  20. Y.J. Yang et al., Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein. Biomacromol 15(4), 1390–1398 (2014). https://doi.org/10.1021/bm500001n

    Article  Google Scholar 

  21. S. Ullah, X. Chen, Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl. Mater. Today (2020). https://doi.org/10.1016/j.apmt.2020.100656

    Article  Google Scholar 

  22. M. Jiang, Review of ‘Glossary of Biotechnology and Nanobiotechnology Terms’ by Kimball Nill. Biomed. Eng. Online 6, 5 (2007). https://doi.org/10.1186/1475-925X-6-5

    Article  Google Scholar 

  23. R. C. Cammarata, “Robert C. Cammarata.”

  24. W. Park, H. Shin, B. Choi, W.K. Rhim, K. Na, D. Keun Han, Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 114(March), 100686 (2020). https://doi.org/10.1016/j.pmatsci.2020.100686

    Article  Google Scholar 

  25. F. Chen, D. Porter, F. Vollrath, Morphology and structure of silkworm cocoons. Mater. Sci. Eng. C 32(4), 772–778 (2012). https://doi.org/10.1016/j.msec.2012.01.023

    Article  Google Scholar 

  26. C. Fu, D. Porter, X. Chen, F. Vollrath, Z. Shao, Understanding the mechanical properties of Antheraea pernyi Silka-From primary structure to condensed structure of the protein. Adv. Funct. Mater. 21(4), 729–737 (2011). https://doi.org/10.1002/adfm.201001046

    Article  Google Scholar 

  27. C. Fu, Y. Wang, J. Guan, X. Chen, F. Vollrath, Z. Shao, Cryogenic toughness of natural silk and a proposed structure-function relationship. Mater. Chem. Front. 3(11), 2507–2513 (2019). https://doi.org/10.1039/c9qm00282k

    Article  Google Scholar 

  28. D.R. Whittall, K.V. Baker, R. Breitling, E. Takano, Host systems for the production of recombinant spider silk. Trends Biotechnol. 39(6), 560–573 (2021). https://doi.org/10.1016/j.tibtech.2020.09.007

    Article  Google Scholar 

  29. T.B. Aigner, E. DeSimone, T. Scheibel, Biomedical applications of recombinant silk-based materials. Adv. Mater. 30(19), 1–28 (2018). https://doi.org/10.1002/adma.201704636

    Article  Google Scholar 

  30. S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 1–15 (2018). https://doi.org/10.1038/natrevmats.2018.16

    Article  Google Scholar 

  31. A.R. Murphy, D.L. Kaplan, Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 19(36), 6443–6450 (2009). https://doi.org/10.1039/b905802h

    Article  Google Scholar 

  32. M.P. Ho, H. Wang, K.T. Lau, Effect of degumming time on silkworm silk fibre for biodegradable polymer composites. Appl. Surf. Sci. 258(8), 3948–3955 (2012). https://doi.org/10.1016/j.apsusc.2011.12.068

    Article  Google Scholar 

  33. H. Yang, Z. Wang, M. Wang, C. Li, Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process. Polymer (Guildf.) 192(February), 122298 (2020). https://doi.org/10.1016/j.polymer.2020.122298

    Article  Google Scholar 

  34. C. Guo et al., Thermoplastic moulding of regenerated silk. Nat. Mater. 19(1), 102–108 (2020). https://doi.org/10.1038/s41563-019-0560-8

    Article  Google Scholar 

  35. S. Ling, C. Li, K. Jin, D.L. Kaplan, M.J. Buehler, Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv. Mater. 28(35), 7783–7790 (2016). https://doi.org/10.1002/adma.201601783

    Article  Google Scholar 

  36. S. Ling et al., Combining in silico design and biomimetic assembly: a new approach for developing high-performance dynamic responsive bio-nanomaterials. Adv. Mater. 30(43), 1–11 (2018). https://doi.org/10.1002/adma.201802306

    Article  Google Scholar 

  37. M. Humenik, G. Lang, T. Scheibel, Silk nanofibril self-assembly versus electrospinning. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10(4), 1–24 (2018). https://doi.org/10.1002/wnan.1509

    Article  Google Scholar 

  38. L.P. Corrales, M.L. Esteves, J.E. Ramirez-Vick, Scaffold design for bone regeneration. Journal of nanoscience and nanotechnology. J. Nanosci. Nanotechnol. 14(1), 15–56 (2014)

    Article  Google Scholar 

  39. J.G. Hardy, T.R. Scheibel, Composite materials based on silk proteins. Prog. Polym. Sci. 35(9), 1093–1115 (2010). https://doi.org/10.1016/j.progpolymsci.2010.04.005

    Article  Google Scholar 

  40. H.V. Unadkat, et al., “Erratum: An algorithm-based topographical biomaterials library to instruct cell fate (Proceedings of the National Academy of Sciences of the United States of America (2011) 108, 40 (16565–16570). https://doi.org/10.1073/pnas.1109861108. Proc. Natl. Acad. Sci. USA 109(15), 5905 (2012). https://doi.org/10.1073/pnas.1204360109.

  41. Y.W. Won, A.N. Patel, D.A. Bull, Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21), 5627–5635 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.070

    Article  Google Scholar 

  42. D.K. Kim, J.I. Kim, T.I. Hwang, B.R. Sim, G. Khang, Bioengineered osteoinductive broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration. ACS Appl. Mater. Interfaces 9(2), 1384–1394 (2017). https://doi.org/10.1021/acsami.6b14351

    Article  Google Scholar 

  43. J.A. Apablaza, M.F. Lezcano, A. Lopez Marquez, K. Godoy Sánchez, G.H. Oporto, F.J. Dias, Main morphological characteristics of tubular polymeric scaffolds to promote peripheral nerve regeneration—a scoping review. Polymers (Basel) (2021). https://doi.org/10.3390/polym13152563

    Article  Google Scholar 

  44. C. Correia et al., Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 8(7), 2483–2492 (2012). https://doi.org/10.1016/j.actbio.2012.03.019

    Article  Google Scholar 

  45. T.D. Sutherland, J.H. Young, S. Weisman, C.Y. Hayashi, D.J. Merritt, Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188 (2010). https://doi.org/10.1146/annurev-ento-112408-085401

    Article  Google Scholar 

  46. K. Felix, R. Ferrándiz, R. Einarsson, S. Dreborg, Allergens of horse dander: comparison among breeds and individual animals by immunoblotting. J. Allergy Clin. Immunol. 98(1), 169–171 (1996)

    Article  Google Scholar 

  47. H.K. Soong, K.R. Kenyon, Adverse reactions to Virgin Silk sutures in cataract surgery. Ophthalmology 91(5), 479–483 (1984). https://doi.org/10.1016/S0161-6420(84)34273-7

    Article  Google Scholar 

  48. J.H. Choi, H. Jeon, J.E. Song, J.M. Oliveira, R.L. Reis, G. Khang, Biofunctionalized lysophosphatidic acid/silk fibroin film for cornea endothelial cell regeneration. Nanomaterials 8(5), 1–14 (2018). https://doi.org/10.3390/nano8050290

    Article  Google Scholar 

  49. K. Na et al., Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28(16), 2631–2637 (2007). https://doi.org/10.1016/j.biomaterials.2007.02.008

    Article  Google Scholar 

  50. D. Yao et al., Salt-leached silk scaffolds with tunable mechanical properties. Biomacromol 13(11), 3723–3729 (2012). https://doi.org/10.1021/bm301197h

    Article  Google Scholar 

  51. Y. Wang, H.J. Kim, G. Vunjak-Novakovic, D.L. Kaplan, Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36), 6064–6082 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.008

    Article  Google Scholar 

  52. N. Reznikov, M. Bilton, L. Lari, M.M. Stevens, R. Kröger, Fractal-like hierarchical organization of bone begins at the nanoscale. Science (2018). https://doi.org/10.1126/science.aao2189

    Article  Google Scholar 

  53. P. Bhattacharjee et al., Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 63, 1–17 (2017). https://doi.org/10.1016/j.actbio.2017.09.027

    Article  Google Scholar 

  54. J. Melke, S. Midha, S. Ghosh, K. Ito, S. Hofmann, Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31, 1–16 (2016). https://doi.org/10.1016/j.actbio.2015.09.005

    Article  Google Scholar 

  55. M. Saleem, S. Rasheed, C. Yougen, Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Sci. Technol. Adv. Mater. 21(1), 242–266 (2020). https://doi.org/10.1080/14686996.2020.1748520

    Article  Google Scholar 

  56. A.M. Collins et al., Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Adv. Mater. 21(1), 75–78 (2009). https://doi.org/10.1002/adma.200802239

    Article  Google Scholar 

  57. M. Farokhi et al., Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 36(1), 68–91 (2018). https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  Google Scholar 

  58. Q. Wang, Y. Zhang, B. Li, L. Chen, Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J. Mater. Chem. B 5(33), 6963–6972 (2017). https://doi.org/10.1039/c7tb00949f

    Article  Google Scholar 

  59. V. Fitzpatrick et al., Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 276(July), 120995 (2021). https://doi.org/10.1016/j.biomaterials.2021.120995

    Article  Google Scholar 

  60. A. Ní Annaidh, K. Bruyère, M. Destrade, M.D. Gilchrist, M. Otténio, Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5(1), 139–148 (2012). https://doi.org/10.1016/j.jmbbm.2011.08.016

    Article  Google Scholar 

  61. K. Liu, Y. Jiang, Z. Bao, X. Yan, Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem. 1(4), 431–447 (2019). https://doi.org/10.31635/ccschem.019.20190048

    Article  Google Scholar 

  62. A. Chortos, Z. Bao, Skin-inspired electronic devices. Mater. Today 17(7), 321–331 (2014). https://doi.org/10.1016/j.mattod.2014.05.006

    Article  Google Scholar 

  63. C. Shi et al., New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials. Adv. Mater. 33(50), 1–32 (2021). https://doi.org/10.1002/adma.202005910

    Article  Google Scholar 

  64. B. Zhu et al., Silk fibroin for flexible electronic devices. Adv. Mater. 28(22), 4250–4265 (2016). https://doi.org/10.1002/adma.201504276

    Article  Google Scholar 

  65. W. Yang et al., On the tear resistance of skin. Nat. Commun. (2015). https://doi.org/10.1038/ncomms7649

    Article  Google Scholar 

  66. C. Wang et al., Multifunctional biosensors made with self-healable silk fibroin imitating skin. ACS Appl. Mater. Interfaces 13(28), 33371–33382 (2021). https://doi.org/10.1021/acsami.1c08568

    Article  Google Scholar 

  67. Z. Xu, M. Wu, W. Gao, H. Bai, A transparent, skin-inspired composite film with outstanding tear resistance based on flat silk cocoon. Adv. Mater. 32(34), 1–8 (2020). https://doi.org/10.1002/adma.202002695

    Article  Google Scholar 

  68. Z. Jia et al., Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 v scaffold for repair of infective bone defects. ACS Biomater. Sci. Eng. 5(1), 244–261 (2019). https://doi.org/10.1021/acsbiomaterials.8b00857

    Article  Google Scholar 

  69. W.I. Abdel-Fattah, A.S.M. Sallam, A.M. Diab, G.W. Ali, Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds. Mater. Sci. Eng. C 54, 158–168 (2015). https://doi.org/10.1016/j.msec.2015.05.015

    Article  Google Scholar 

  70. L.P. Yan et al., Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater. 12(1), 227–241 (2015). https://doi.org/10.1016/j.actbio.2014.10.021

    Article  Google Scholar 

  71. M. Farokhi, F. Mottaghitalab, M.A. Shokrgozar, J. Ai, J. Hadjati, M. Azami, Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Mater. Sci. Eng. C 35(1), 401–410 (2014). https://doi.org/10.1016/j.msec.2013.11.023

    Article  Google Scholar 

  72. L.P. Yan, J.M. Oliveira, A.L. Oliveira, R.L. Reis, In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. J. Biomed. Mater. Res. Part B. Appl. Biomater. 103(4), 888–898 (2015). https://doi.org/10.1002/jbm.b.33267

    Article  Google Scholar 

  73. P. Shi et al., Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. Nanoscale 9(38), 14520–14532 (2017). https://doi.org/10.1039/c7nr03093b

    Article  Google Scholar 

  74. H. Nazari et al., Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. Polym. Adv. Technol. 31(2), 248–259 (2020). https://doi.org/10.1002/pat.4765

    Article  Google Scholar 

  75. R. Raho et al., Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. Mater. Sci. Eng. C 107(July), 110219 (2019). https://doi.org/10.1016/j.msec.2019.110219

    Article  Google Scholar 

  76. N. Johari, H.R. Madaah Hosseini, N. Taromi, S. Arasteh, S. Kazemnejad, A. Samadikuchaksaraei, Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite. J. Med. Biol. Eng. 38(1), 99–105 (2018). https://doi.org/10.1007/s40846-017-0295-4

    Article  Google Scholar 

  77. S.K. Samal et al., Biomimetic magnetic silk scaffolds. ACS Appl. Mater. Interfaces 7(11), 6282–6292 (2015). https://doi.org/10.1021/acsami.5b00529

    Article  Google Scholar 

  78. A. Teimouri, L. Ghorbanian, H. Salavati, A.N. Chermahini, Fabrication and characterization of POM/ZrO2/silk fibroin composite scaffolds. Mater. Lett. 157, 85–88 (2015). https://doi.org/10.1016/j.matlet.2015.05.064

    Article  Google Scholar 

  79. M. Passi, V. Kumar, G. Packirisamy, Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater. Sci. Eng. C 107(May), 2020 (2019). https://doi.org/10.1016/j.msec.2019.110255

    Article  Google Scholar 

  80. J. Pyun et al., Nanocomposite Gold-Silk Nano fi bers. Nano Lett. 102, 10–13 (2012)

    Google Scholar 

  81. B. Zafar, F. Mottaghitalab, Z. Shahosseini, B. Negahdari, M. Farokhi, Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia 9(July), 100518 (2020). https://doi.org/10.1016/j.mtla.2019.100518

    Article  Google Scholar 

  82. V.P. Ribeiro et al., Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration. ACS Appl. Mater. Interfaces 11(4), 3781–3799 (2019). https://doi.org/10.1021/acsami.8b21259

    Article  Google Scholar 

  83. P. Shi, T.K.H. Teh, S.L. Toh, J.C.H. Goh, Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration. Biomaterials 34(24), 5947–5957 (2013). https://doi.org/10.1016/j.biomaterials.2013.04.046

    Article  Google Scholar 

  84. L. Ghorbanian, R. Emadi, S.M. Razavi, H. Shin, A. Teimouri, Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int. J. Biol. Macromol. 58, 275–280 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.004

    Article  Google Scholar 

  85. M. Atrian, M. Kharaziha, R. Emadi, F. Alihosseini, Silk-Laponite® fibrous membranes for bone tissue engineering. Appl. Clay Sci. 174(March), 90–99 (2019). https://doi.org/10.1016/j.clay.2019.03.038

    Article  Google Scholar 

  86. Z. Hadisi et al., In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications. Polym. Test. 91(June), 106698 (2020). https://doi.org/10.1016/j.polymertesting.2020.106698

    Article  Google Scholar 

  87. F. Avani, S. Damoogh, F. Mottaghitalab, A. Karkhaneh, M. Farokhi, Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 69(1), 32–43 (2020). https://doi.org/10.1080/00914037.2019.1616201

    Article  Google Scholar 

  88. X.-Y. Zhang et al., Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 136, 1247–1257 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.172

    Article  Google Scholar 

  89. S. Jiang, X. Liu, Y. Liu, J. Liu, W. He, Y. Dong, Synthesis of silver @hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. J. Photochem. Photobiol. B Biol. 202(6), 111677 (2020). https://doi.org/10.1016/j.jphotobiol.2019.111677

    Article  Google Scholar 

  90. I. Bružauskaitė, D. Bironaitė, E. Bagdonas, E. Bernotienė, Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68(3), 355–369 (2016). https://doi.org/10.1007/s10616-015-9895-4

    Article  Google Scholar 

  91. N. Panda, A. Bissoyi, K. Pramanik, A. Biswas, Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. J. Biomater. Sci. Polym. Ed. 25(13), 1440–1457 (2014). https://doi.org/10.1080/09205063.2014.943548

    Article  Google Scholar 

  92. J.A. Apablaza, M.F. Lezcano, K.G. Sánchez, G.H. Oporto, F.J. Dias, Optimal morphometric characteristics of a tubular polymeric scaffold to promote peripheral nerve regeneration: a scoping review. Polymers (2022). https://doi.org/10.3390/polym14030397

    Article  Google Scholar 

  93. M. Tian, Z. Yang, K. Kuwahara, M.E. Nimni, C. Wan, B. Han, Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater. 8(2), 753–762 (2012). https://doi.org/10.1016/j.actbio.2011.10.030

    Article  Google Scholar 

  94. S. Pina et al., Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs 204(3–4), 150–163 (2017). https://doi.org/10.1159/000469703

    Article  Google Scholar 

  95. Y. Tan et al., 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication (2014). https://doi.org/10.1088/1758-5082/6/2/024111

    Article  Google Scholar 

  96. K. Schacht, T. Jüngst, M. Schweinlin, A. Ewald, J. Groll, T. Scheibel, Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chemie - Int. Ed. 54(9), 2816–2820 (2015). https://doi.org/10.1002/anie.201409846

    Article  Google Scholar 

  97. J.B. Costa, J. Silva-Correia, J.M. Oliveira, R.L. Reis, Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv. Healthc. Mater. 6(22), 1–8 (2017). https://doi.org/10.1002/adhm.201701021

    Article  Google Scholar 

  98. S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 5(7), 590 (2006)

    Article  Google Scholar 

  99. X. Wang et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  Google Scholar 

  100. L. Wang et al., Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Adv. 10(17), 10118–10128 (2020). https://doi.org/10.1039/c9ra09710d

    Article  Google Scholar 

  101. A. Teimouri, R. Ebrahimi, R. Emadi, B.H. Beni, A.N. Chermahini, Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. Int. J. Biol. Macromol. 76, 292–302 (2015)

    Article  Google Scholar 

  102. M. Gholipourmalekabadi et al., In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposites scaffolds. Biotechnol. Appl. Biochem. 62(4), 441–450 (2015). https://doi.org/10.1002/bab.1285

    Article  Google Scholar 

  103. V.P. Ribeiro, S. Pina, R.F. Canadas, S. Morais, C. Vilela, S. Vieira, In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration. Regen. Med. Front. (2019). https://doi.org/10.20900/rmf20190007

    Article  Google Scholar 

  104. L. Nie et al., Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation. Dent. Mater. 35(10), 1397–1407 (2019). https://doi.org/10.1016/j.dental.2019.07.024

    Article  Google Scholar 

  105. N. Hirosawa et al., Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model. J. Orthop. Res. 36(8), 2210–2217 (2018). https://doi.org/10.1002/jor.23875

    Article  Google Scholar 

  106. E. Afjeh-Dana et al., Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications. Int. J. Biol. Macromol. 129, 1034–1039 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.050

    Article  Google Scholar 

  107. I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013(3), 38 (2013). https://doi.org/10.5339/gcsp.2013.38

    Article  Google Scholar 

  108. J. Ran et al., A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Int. J. Biol. Macromol. 93, 87–97 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.062

    Article  Google Scholar 

  109. L. Chen, J. Hu, J. Ran, X. Shen, H. Tong, Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 65, 1–7 (2014). https://doi.org/10.1016/j.ijbiomac.2014.01.003

    Article  Google Scholar 

  110. H. Zhou et al., Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering. J. Biomater. Sci. Polym. Ed. 30(17), 1604–1619 (2019). https://doi.org/10.1080/09205063.2019.1652418

    Article  Google Scholar 

  111. K. Wang et al., Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration. J. Mater. Sci. Technol. 63, 172–181 (2021). https://doi.org/10.1016/j.jmst.2020.02.030

    Article  Google Scholar 

  112. J.C. Moses, T. Saha, B.B. Mandal, Chondroprotective and osteogenic effects of silk-based bioinks in developing 3D bioprinted osteochondral interface. Bioprinting 17, e00067 (2020)

    Article  Google Scholar 

  113. L. Wang et al., Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int. J. Biol. Macromol. 142, 366–375 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.107

    Article  Google Scholar 

  114. M. Passi, V. Kumar, G. Packirisamy, Theranostic nanozyme : silk fi broin based multifunctional nanocomposites to combat oxidative stress. Mater. Sci. Eng. C (2020). https://doi.org/10.1016/j.msec.2019.110255

    Article  Google Scholar 

  115. M. Amirikia, S.M.A. Shariatzadeh, S.G.A. Jorsaraei, M.S. Mehranjani, Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells. Eur. Biophys. J. 47(5), 573–581 (2018). https://doi.org/10.1007/s00249-018-1279-1

    Article  Google Scholar 

  116. Y. Dong, M. Hong, R. Dai, H. Wu, P. Zhu, Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: In vitro and in vivo evaluations. Sci. Total Environ. 707, 135976 (2020). https://doi.org/10.1016/j.scitotenv.2019.135976

    Article  Google Scholar 

  117. E.I. Paşcu, J. Stokes, G.B. McGuinness, Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 33(8), 4905–4916 (2013). https://doi.org/10.1016/j.msec.2013.08.012

    Article  Google Scholar 

  118. T. Liu et al., Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: from physicochemical characteristics to in vitro biological properties. Mater. Sci. Eng. C 94(October), 547–557 (2019). https://doi.org/10.1016/j.msec.2018.09.063

    Article  Google Scholar 

  119. F.M. Miroiu et al., Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 169(1), 151–158 (2010). https://doi.org/10.1016/j.mseb.2009.10.004

    Article  Google Scholar 

  120. J. Mobika, M. Rajkumar, S.P. Linto Sibi, V. Nithya Priya, Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application. Mater. Chem. Phys. 250(12), 123187 (2020). https://doi.org/10.1016/j.matchemphys.2020.123187

    Article  Google Scholar 

  121. R.M. Felfel et al., Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(D, L-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA. Mater. Des. 160, 455–467 (2018). https://doi.org/10.1016/j.matdes.2018.09.035

    Article  Google Scholar 

  122. Y. Dong et al., Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects. Appl. Mater. Today 19, 100548 (2020). https://doi.org/10.1016/j.apmt.2019.100548

    Article  Google Scholar 

  123. K. Hu, B.R. Olsen, The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30–38 (2016). https://doi.org/10.1016/j.bone.2016.06.013

    Article  Google Scholar 

  124. O. Colpankan Gunes et al., Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration. Int. J. Polym. Mater. Polym. Biomater. 68(5), 217–228 (2019). https://doi.org/10.1080/00914037.2018.1443928

    Article  Google Scholar 

  125. K.P. Menard, N.R. Menard, Dynamic Mechanical Analysis in the Analysis of Polymers and Rubbers, no. 9 (2015). https://doi.org/10.1002/0471440264.pst102.pub2

  126. D. Warnecke et al., Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. J. Mech. Behav. Biomed. Mater. 86(June), 314–324 (2018). https://doi.org/10.1016/j.jmbbm.2018.06.041

    Article  Google Scholar 

  127. K.A. Oberg, J.M. Ruysschaert, E. Goormaghtigh, The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur. J. Biochem. 271(14), 2937–2948 (2004). https://doi.org/10.1111/j.1432-1033.2004.04220.x

    Article  Google Scholar 

  128. D.J. Belton, R. Plowright, D.L. Kaplan, C.C. Perry, A robust spectroscopic method for the determination of protein conformational composition—application to the annealing of silk. Acta Biomater. 73, 355–364 (2018). https://doi.org/10.1016/j.actbio.2018.03.058

    Article  Google Scholar 

  129. E. Tanasa, C. Zaharia, A. Hudita, I.C. Radu, M. Costache, B. Galateanu, Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. Mater. Sci. Eng. C 110(June), 1–13 (2020). https://doi.org/10.1016/j.msec.2020.110714

    Article  Google Scholar 

  130. H.Y. Hu, Q. Li, H.C. Cheng, H.N. Du, Β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy. Biopolym. Biospectroscopy Sect. 62(1), 15–21 (2001). https://doi.org/10.1002/1097-0282(2001)62:1%3c15::AID-BIP30%3e3.0.CO;2-J

    Article  Google Scholar 

  131. J. Cheng, T.J. Deming, Synthesis of polypeptides by ROP of NCAs. Pept. Mater. 310(June), 1–26 (2011). https://doi.org/10.1007/128

    Article  Google Scholar 

  132. M.S. Rahman, et al., Morphological Characterization of Hydrogels (2019). https://doi.org/10.1007/978-3-319-77830-3_28

  133. N. Johari, H.R. Madaah Hosseini, A. Samadikuchaksaraei, Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering. Mater. Sci. Eng. C 79, 783–792 (2017). https://doi.org/10.1016/j.msec.2017.05.105

    Article  Google Scholar 

  134. P. Ravi, P.S. Shiakolas, A.D. Thorat, Analyzing the effects of temperature, nozzle-bed distance, and their interactions on the width of fused deposition modeled struts using statistical techniques toward precision scaffold fabrication. J. Manuf. Sci. Eng. Trans. ASME 139(7), 1–9 (2017). https://doi.org/10.1115/1.4035963

    Article  Google Scholar 

  135. N. Johari, H.R. Madaah-Hosseini, A. Samadikuchaksaraei, Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering. Mater. Sci. Eng. C 82(September), 265–276 (2018). https://doi.org/10.1016/j.msec.2017.09.001

    Article  Google Scholar 

  136. X. Zhang, C. Jia, X. Qiao, T. Liu, K. Sun, Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering. Polym. Test. 62, 88–95 (2017). https://doi.org/10.1016/j.polymertesting.2017.06.012

    Article  Google Scholar 

  137. A.S. Gobin, C.E. Butler, A.B. Mathur, Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng. 12(12), 3383–3394 (2006). https://doi.org/10.1089/ten.2006.12.3383

    Article  Google Scholar 

  138. G. Janani, S.K. Nandi, B.B. Mandal, Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater. 67(2018), 167–182 (2018). https://doi.org/10.1016/j.actbio.2017.11.053

    Article  Google Scholar 

  139. P. Chantawong et al., Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. J. Mater. Sci. Mater. Med. (2017). https://doi.org/10.1007/s10856-017-5999-z

    Article  Google Scholar 

  140. C. Wang, Y. Jia, W. Yang, C. Zhang, K. Zhang, Y. Chai, Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J. Biomed. Mater. Res. Part A 106(7), 2070–2077 (2018). https://doi.org/10.1002/jbm.a.36390

    Article  Google Scholar 

  141. J. Hu et al., Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement. J. Mater. Sci. Mater. Med. 23(3), 711–722 (2012). https://doi.org/10.1007/s10856-011-4533-y

    Article  Google Scholar 

  142. L.B. Mao et al., Synthetic nacre by predesigned matrix-directed mineralization. Science (80-.) 354(6308), 107–110 (2016). https://doi.org/10.1126/science.aaf8991

    Article  Google Scholar 

  143. A.D. Graham et al., High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-06358-x

    Article  Google Scholar 

  144. N. Dinjaski, R. Plowright, S. Zhou, D.J. Belton, C.C. Perry, D.L. Kaplan, Osteoinductive recombinant silk fusion proteins for bone regeneration. Acta Biomater. 49, 127–139 (2017). https://doi.org/10.1016/j.actbio.2016.12.002

    Article  Google Scholar 

  145. S. Behera et al., Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering. Nanomed. Nanotechnol. Biol. Med. 13(5), 1745–1759 (2017). https://doi.org/10.1016/j.nano.2017.02.016

    Article  Google Scholar 

Download references

Funding

This research received no financial support by any funding organization or institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imran Ansari.

Ethics declarations

Conflict of interest

Both the authors have no conflict of interest in any part of the work and with any institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.I., Sheikh, N.A. Biocompatible Scaffold Based on Silk Fibroin for Tissue Engineering Applications. J. Inst. Eng. India Ser. C 104, 201–217 (2023). https://doi.org/10.1007/s40032-022-00891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00891-z

Keywords

Navigation