Skip to main content

Advertisement

Log in

Nanotechnology Potent Photothermal and Photodynamic Immunotherapies of Cancer

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Nano-photosensitizer-based light-activated treatments are safe for numerous cancer indications. Photodynamic therapy (PDT) induces chemical damage to targeted lesions, and photothermal therapy (PTT) causes thermal damage. PTT contrast agents are not required for PDT, but they can boost their effectiveness. PDT uses photosensitizers. Phototherapies based on nanoparticles exhibit high efficacy, limited invasion, and few harmful effects when used to treat cancers. This review discusses phototherapies for cancer therapy and developing preclinical methodologies that may improve their effectiveness and utility.

Methods

All the reported works were retrieved from two databases (i.e., PubMed and Google Scholar) using the keywords “Photothermal therapy” “immunotherapy”, “cancer”, “nanoparticles”, and “photodynamic therapy”. This paper surveyed studies on nanoparticle-based photo/immunotherapies and examined recent nanoparticle-based PTT and PDT developments. We also will be discussed difficulties and potential future research areas.

Results

Recent research has focused on these phototherapies. Phototherapeutic devices and drugs have been evolved recently for cancer treatments, however, considerable difficulties have limited their clinical use to a few dermatological disorders. Combining nano-based photosensitizers with chemotherapies or immunotherapies for targeting or localizing activation could improve outcomes and reduce adverse effects.

Conclusion

These innovative approaches are anticipated to play a significant role in advancing conventional tumor therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Non applicable.

References

  1. Mohammadian, F., Pilehvar-Soltanahmadi, Y., Alipour, S., Dadashpour, M., & Zarghami, N. (2017). Chrysin alters microRNAs expression levels in gastric cancer cells: Possible molecular mechanism. Drug Research, 67(09), 509–514.

    Article  CAS  PubMed  Google Scholar 

  2. Marofi, F., Abdul-Rasheed, O. F., Rahman, H. S., Budi, H. S., Jalil, A. T., Yumashev, A. V., Hassanzadeh, A., Yazdanifar, M., Motavalli, R., & Chartrand, M. S. (2021). CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Science, 112(9), 3427–3436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achmad, H., Ibrahim, Y. S., Al-Taee, M. M., Gabr, G. A., Riaz, M. W., Alshahrani, S. H., Ramírez-Coronel, A. A., Jalil, A. T., Budi, H. S., & Sawitri, W. (2022). Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. International Immunopharmacology, 113, 109434.

    Article  CAS  PubMed  Google Scholar 

  4. Dercle, L., Ammari, S., Seban, R.-D., Schwartz, L. H., Houot, R., Labaied, N., Mokrane, F.-Z., Lazarovici, J., Danu, A., & Marabelle, A. (2018). Kinetics and nadir of responses to immune checkpoint blockade by anti-PD1 in patients with classical Hodgkin lymphoma. European Journal of Cancer, 91, 136–144.

    Article  CAS  PubMed  Google Scholar 

  5. Dirix, L. Y., Takacs, I., Jerusalem, G., Nikolinakos, P., Arkenau, H.-T., Forero-Torres, A., Boccia, R., Lippman, M. E., Somer, R., & Smakal, M. (2018). Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN solid tumor study. Breast Cancer Research and Treatment, 167(3), 671–686.

    Article  CAS  PubMed  Google Scholar 

  6. Sakamuri, D., Glitza, I. C., Betancourt Cuellar, S. L., Subbiah, V., Fu, S., Tsimberidou, A. M., Wheler, J. J., Hong, D. S., Naing, A., & Falchook, G. S. (2018). Phase I dose-escalation study of anti–CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancersipilimumab and lenalidomide in advanced malignancies. Molecular Cancer Therapeutics, 17(3), 671–676.

    Article  CAS  PubMed  Google Scholar 

  7. Mao, L., Xiao, Y., Yang, Q.-C., Yang, S.-C., Yang, L.-L., & Sun, Z.-J. (2021). TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncology, 121, 105472.

    Article  CAS  PubMed  Google Scholar 

  8. Ray, A., Das, D. S., Song, Y., Hideshima, T., Tai, Y.-T., Chauhan, D., & Anderson, K. C. (2018). Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia, 32(3), 843–846.

    Article  CAS  PubMed  Google Scholar 

  9. Wen, X., Zeng, X., Cheng, X., Zeng, X., Liu, J., Zhang, Y., Li, Y., Chen, H., Huang, J., & Guo, Z. (2022). PD-L1-Targeted radionuclide therapy combined with αPD-L1 antibody immunotherapy synergistically improves the antitumor effect. Molecular Pharmaceutics. https://doi.org/10.1021/acs.molpharmaceut.2c00281

    Article  PubMed  Google Scholar 

  10. Li, Y., Yang, Z., Jalil, A. T., Saleh, M. M., & Wu, B. (2023). In vivo and in vitro biocompatibility study of CuS nanoparticles: Photosensitizer for glioblastoma photothermal therapy. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04313-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaufman, H. L., Russell, J., Hamid, O., Bhatia, S., Terheyden, P., D’Angelo, S. P., Shih, K. C., Lebbé, C., Linette, G. P., & Milella, M. (2016). Avelumab in patients with chemotherapy-refractory metastatic merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. The Lancet Oncology, 17(10), 1374–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sade-Feldman, M., Jiao, Y. J., Chen, J. H., Rooney, M. S., Barzily-Rokni, M., Eliane, J.-P., Bjorgaard, S. L., Hammond, M. R., Vitzthum, H., & Blackmon, S. M. (2017). Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 8(1), 1–11.

    Article  CAS  Google Scholar 

  13. Pollack, M., Betof, A., Dearden, H., Rapazzo, K., Valentine, I., Brohl, A., Ancell, K., Long, G., Menzies, A., & Eroglu, Z. (2018). Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Annals of Oncology, 29(1), 250–255.

    Article  CAS  PubMed  Google Scholar 

  14. Costa, R., Costa, R. B., Talamantes, S. M., Helenoswki, I., Carneiro, B. A., Chae, Y. K., Gradishar, W. J., Kurzrock, R., & Giles, F. J. (2017). Analyses of selected safety endpoints in phase 1 and late-phase clinical trials of anti-PD-1 and PD-L1 inhibitors: Prediction of immune-related toxicities. Oncotarget, 8(40), 67782.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., Hicks, M., Puzanov, I., Alexander, M. R., & Bloomer, T. L. (2016). Fulminant myocarditis with combination immune checkpoint blockade. New England Journal of Medicine, 375(18), 1749–1755.

    Article  PubMed  Google Scholar 

  16. Shaban SA, Al‑Rahim AM, Suleiman AA. ALU repeat as potential molecular marker in the detection and prognosis of different cancer types: A systematic review. Molecular and Clinical Oncology. 2022 Apr 1;16(4):1-9.

    Article  Google Scholar 

  17. Kudo, M. (2022). Atezolizumab plus bevacizumab followed by curative conversion (ABC conversion) in patients with unresectable, TACE-unsuitable intermediate-stage hepatocellular carcinoma. Liver Cancer, 11(5), 399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takaki, H., Cornelis, F., Kako, Y., Kobayashi, K., Kamikonya, N., & Yamakado, K. (2017). Thermal ablation and immunomodulation: From preclinical experiments to clinical trials. Diagnostic and Interventional Imaging, 98(9), 651–659.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, W., Pu, Y., & Shi, J. (2022). Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. Journal of Nanobiotechnology, 20(1), 1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pakravan, A., Azizi, M., Rahimi, F., Bani, F., Mahmoudzadeh, F., Salehi, R., & Mahkam, M. (2021). Comparative effect of thermo/pH-responsive polymer-coated gold nanocages and hollow nanostars on chemo-photothermal therapy of breast cancer cells. Cancer Nanotechnology, 12(1), 1–26.

    Article  Google Scholar 

  21. Ali, M. R., Ali, H. R., Rankin, C. R., & El-Sayed, M. A. (2016). Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials, 102, 1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Talaei, S., Mellatyar, H., Pilehvar-Soltanahmadi, Y., Asadi, A., Akbarzadeh, A., & Zarghami, N. (2019). 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. Journal of Drug Delivery Science and Technology, 49, 162–168.

    Article  CAS  Google Scholar 

  23. Wang, S., Li, L., Ning, X., Xue, P., & Liu, Y. (2019). pH-activated heat shock protein inhibition and radical generation enhanced NIR luminescence imaging-guided photothermal tumour ablation. International Journal of Pharmaceutics, 566, 40–45.

    Article  CAS  PubMed  Google Scholar 

  24. Guo, Z., Liu, Y., Cheng, X., Wang, D., Guo, S., Jia, M., Ma, K., Cui, C., Wang, L., & Zhou, H. (2020). Versatile biomimetic cantharidin-tellurium nanoparticles enhance photothermal therapy by inhibiting the heat shock response for combined tumor therapy. Acta Biomaterialia, 110, 208–220.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S., Tian, Y., Tian, W., Sun, J., Zhao, S., Liu, Y., Wang, C., Tang, Y., Ma, X., & Teng, Z. (2016). Selectively sensitizing malignant cells to photothermal therapy using a CD44-targeting heat shock protein 72 depletion nanosystem. ACS Nano, 10(9), 8578–8590.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, H., Ito, T., Tawada, A., Maeda, H., Yamanokuchi, H., Isahara, K., Yoshida, K., Uchiyama, Y., & Asari, A. (2002). Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72. Journal of Biological Chemistry, 277(19), 17308–17314.

    Article  CAS  PubMed  Google Scholar 

  27. Qiao, L., Mei, Z., Yang, Z., Li, X., Cai, H., & Liu, W. (2016). ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway. Photodiagnosis and Photodynamic Therapy, 14, 66–73.

    Article  CAS  PubMed  Google Scholar 

  28. Edmonds, C., Hagan, S., Gallagher-Colombo, S. M., Busch, T. M., & Cengel, K. A. (2012). Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer. Cancer Biology & Therapy, 13(14), 1463–1470.

    Article  CAS  Google Scholar 

  29. Wan, S.-S., Zeng, J.-Y., Cheng, H., & Zhang, X.-Z. (2018). ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor. Biomaterials, 185, 51–62.

    Article  CAS  PubMed  Google Scholar 

  30. Srivatsan, A., Wang, Y., Joshi, P., Sajjad, M., Chen, Y., Liu, C., Thankppan, K., Missert, J. R., Tracy, E., & Morgan, J. (2011). In vitro cellular uptake and dimerization of signal transducer and activator of transcription-3 (STAT3) identify the photosensitizing and imaging-potential of isomeric photosensitizers derived from chlorophyll-a and bacteriochlorophyll-a. Journal of Medicinal Chemistry, 54(19), 6859–6873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibault, F., Corvaisier, M., Bailly, F., Huet, G., Melnyk, P., & Cotelle, P. (2016). Non-photoinduced biological properties of verteporfin. Current Medicinal Chemistry, 23(11), 1171–1184.

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y., Li, X., Doughty, A., West, C., Wang, L., Zhou, F., Nordquist, R. E., & Chen, W. R. (2019). Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 18, 44–53.

    Article  CAS  PubMed  Google Scholar 

  33. Domvri, K., Petanidis, S., Anestakis, D., Porpodis, K., Bai, C., Zarogoulidis, P., Freitag, L., Hohenforst-Schmidt, W., & Katopodi, T. (2020). Dual photothermal MDSCs-targeted immunotherapy inhibits lung immunosuppressive metastasis by enhancing T-cell recruitment. Nanoscale, 12(13), 7051–7062.

    Article  CAS  PubMed  Google Scholar 

  34. Saneja, A., Kumar, R., Arora, D., Kumar, S., Panda, A. K., & Jaglan, S. (2018). Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discovery Today, 23(5), 1115–1125.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Hetty, H. R. A. K., Jalil, A. T., Alghazali, M. W., fadel, H. A., Ahmed, O. S., Abosaooda, M., & Ali, M. (2023). Nanomaterials for combination cancer photothermal therapy. Emergent Materials. https://doi.org/10.1007/s42247-023-00464-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu, X., Zhang, Y., Huang, H., Zhang, H., Hou, L., & Zhang, Z. (2017). Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo-and photothermal therapy. Journal of Drug Targeting, 25(5), 425–435.

    Article  CAS  PubMed  Google Scholar 

  37. Han, Z., Gao, M., Wang, Z., Peng, L., Zhao, Y., & Sun, L. (2022). pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy. Journal of Drug Delivery Science and Technology, 75, 103610.

    Article  CAS  Google Scholar 

  38. Ju, Y., Zhang, H., Yu, J., Tong, S., Tian, N., Wang, Z., Wang, X., Su, X., Chu, X., & Lin, J. (2017). Monodisperse Au–Fe2C Janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano, 11(9), 9239–9248.

    Article  CAS  PubMed  Google Scholar 

  39. Song, S., Shen, H., Yang, T., Wang, L., Fu, H., Chen, H., & Zhang, Z. (2017). Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 9(11), 9484–9495.

    Article  CAS  Google Scholar 

  40. Hu, Y., Chi, C., Wang, S., Wang, L., Liang, P., Liu, F., Shang, W., Wang, W., Zhang, F., & Li, S. (2017). A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer. Advanced Materials, 29(33), 1700448.

    Article  Google Scholar 

  41. Wei, W., Zarghami, N., Abasi, M., Ertas, Y. N., & Pilehvar, Y. (2022). Implantable magnetic nanofibers with ON–OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. Journal of Biomedical Materials Research Part A, 110(4), 851–860.

    Article  CAS  PubMed  Google Scholar 

  42. Valizadeh, A., Asghari, S., Abbaspoor, S., Jafari, A., Raeisi, M., & Pilehvar, Y. (2023). Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1909

    Article  PubMed  Google Scholar 

  43. Jung, H. S., Han, J., Lee, J.-H., Lee, J. H., Choi, J.-M., Kweon, H.-S., Han, J. H., Kim, J.-H., Byun, K. M., & Jung, J. H. (2015). Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. Journal of the American Chemical Society, 137(8), 3017–3023.

    Article  CAS  PubMed  Google Scholar 

  44. Jung, H. S., Lee, J.-H., Kim, K., Koo, S., Verwilst, P., Sessler, J. L., Kang, C., & Kim, J. S. (2017). A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. Journal of the American Chemical Society, 139(29), 9972–9978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan, L., Liu, J., & Shi, J. (2017). Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy. ACS Applied Materials & Interfaces, 9(19), 15952–15961.

    Article  CAS  Google Scholar 

  46. Belity, T., Horowitz, M., Hoffman, J. R., Epstein, Y., Bruchim, Y., Todder, D., & Cohen, H. (2022). Heat-stress preconditioning attenuates behavioral responses to psychological stress: The Role of HSP-70 in modulating stress responses. International Journal of Molecular Sciences, 23(8), 4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calderwood, S. K., & Gong, J. (2016). Heat shock proteins promote cancer: It’s a protection racket. Trends in Biochemical Sciences, 41(4), 311–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, W.-H., Luo, G.-F., Lei, Q., Hong, S., Qiu, W.-X., Liu, L.-H., Cheng, S.-X., & Zhang, X.-Z. (2017). Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano, 11(2), 1419–1431.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y., Zhu, W., Dong, Z., Chao, Y., Xu, L., Chen, M., & Liu, Z. (2017). 1D coordination polymer nanofibers for low-temperature photothermal therapy. Advanced Materials, 29(40), 1703588.

    Article  Google Scholar 

  50. Wang, Z., Li, S., Zhang, M., Ma, Y., Liu, Y., Gao, W., Zhang, J., & Gu, Y. (2017). Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy. Advanced Science, 4(2), 1600327.

    Article  PubMed  Google Scholar 

  51. Yang, L., Tseng, Y.-T., Suo, G., Chen, L., Yu, J., Chiu, W.-J., Huang, C.-C., & Lin, C.-H. (2015). Photothermal therapeutic response of cancer cells to aptamer–gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Applied Materials & Interfaces, 7(9), 5097–5106.

    Article  CAS  Google Scholar 

  52. Chatterjee, M., Andrulis, M., Stühmer, T., Müller, E., Hofmann, C., Steinbrunn, T., Heimberger, T., Schraud, H., Kressmann, S., & Einsele, H. (2013). The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica, 98(7), 1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, T., Wang, D., Yu, H., Wang, M., Liu, J., Feng, B., Zhou, F., Yin, Q., Zhang, Z., & Huang, Y. (2016). Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 10(3), 3496–3508.

    Article  CAS  PubMed  Google Scholar 

  54. Fletcher, J. I., Williams, R. T., Henderson, M. J., Norris, M. D., & Haber, M. (2016). ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resistance Updates, 26, 1–9.

    Article  PubMed  Google Scholar 

  55. Li, Y., Deng, Y., Tian, X., Ke, H., Guo, M., Zhu, A., Yang, T., Guo, Z., Ge, Z., & Yang, X. (2015). Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano, 9(10), 9626–9637.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L., Lin, X., Wang, J., Hu, Z., Ji, Y., Hou, S., Zhao, Y., Wu, X., & Chen, C. (2014). Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: Enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Advanced Functional Materials., 24(27), 4229–4239.

    Article  CAS  Google Scholar 

  57. Wang, L., Sun, Q., Wang, X., Wen, T., Yin, J.-J., Wang, P., Bai, R., Zhang, X.-Q., Zhang, L.-H., & Lu, A.-H. (2015). Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. Journal of the American Chemical Society, 137(5), 1947–1955.

    Article  CAS  PubMed  Google Scholar 

  58. Fay, B. L., Melamed, J. R., & Day, E. S. (2015). Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. International Journal of Nanomedicine, 10, 6931.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. DeMichele, A., Yee, D., & Esserman, L. (2017). Mechanisms of resistance to neoadjuvant chemotherapy in breast cancer. New England Journal of Medicine, 377(23), 2287–2289.

    Article  PubMed  Google Scholar 

  60. Wang, C., Xu, L., Liang, C., Xiang, J., Peng, R., & Liu, Z. (2014). Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Advanced Materials, 26(48), 8154–8162.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, X. W., van Beek, E. M., Schornagel, K., Van der Maaden, H., Van Houdt, M., Otten, M. A., Finetti, P., Van Egmond, M., Matozaki, T., & Kraal, G. (2011). CD47–signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proceedings of the National Academy of Sciences, 108(45), 18342–18347.

    Article  CAS  Google Scholar 

  62. Chen, Q., Xu, L., Liang, C., Wang, C., Peng, R., & Liu, Z. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 7(1), 1–13.

    Article  Google Scholar 

  63. Liu, Y., Maccarini, P., Palmer, G. M., Etienne, W., Zhao, Y., Lee, C.-T., Ma, X., Inman, B. A., & Vo-Dinh, T. (2017). Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Scientific Reports, 7(1), 1–6.

    Google Scholar 

  64. Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.

    Article  CAS  PubMed  Google Scholar 

  65. Long, G. V., Atkinson, V., Lo, S., Sandhu, S., Guminski, A. D., Brown, M. P., Wilmott, J. S., Edwards, J., Gonzalez, M., & Scolyer, R. A. (2018). Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. The Lancet Oncology, 19(5), 672–681.

    Article  CAS  PubMed  Google Scholar 

  66. D’Angelo, S. P., Mahoney, M. R., Van Tine, B. A., Atkins, J., Milhem, M. M., Jahagirdar, B. N., Antonescu, C. R., Horvath, E., Tap, W. D., & Schwartz, G. K. (2018). Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials. The Lancet Oncology, 19(3), 416–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hellmann, M. D., Callahan, M. K., Awad, M. M., Calvo, E., Ascierto, P. A., Atmaca, A., Rizvi, N. A., Hirsch, F. R., Selvaggi, G., & Szustakowski, J. D. (2019). Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell, 35(2), 329.

    Article  CAS  PubMed  Google Scholar 

  68. Wolchok, J. D., Chiarion-Sileni, V., Gonzalez, R., Grob, J.-J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., & Dummer, R. (2022). Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. Journal of Clinical Oncology, 40(2), 127–137.

    Article  CAS  PubMed  Google Scholar 

  69. Wolchok, J. D., Chiarion-Sileni, V., Gonzalez, R., Rutkowski, P., Grob, J.-J., Cowey, C. L., Lao, C. D., Wagstaff, J., Schadendorf, D., & Ferrucci, P. F. (2017). Overall survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine, 377(14), 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  70. Park, W., Cho, S., Han, J., Shin, H., Na, K., Lee, B., & Kim, D.-H. (2018). Advanced smart-photosensitizers for more effective cancer treatment. Biomaterials Science, 6(1), 79–90.

    Article  CAS  Google Scholar 

  71. Tsai, W.-H., Yu, K.-H., Huang, Y.-C., & Lee, C.-I. (2018). EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. International Journal of Nanomedicine, 13, 903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dos Santos, A. F., Terra, L. F., Wailemann, R. A., Oliveira, T. C., Gomes, Vd. M., Mineiro, M. F., Meotti, F. C., Bruni-Cardoso, A., Baptista, M. S., & Labriola, L. (2017). Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer, 17(1), 1–15.

    Google Scholar 

  73. Lopez, R. F. V., Lange, N., Guy, R., & Bentley, M. V. L. B. (2004). Photodynamic therapy of skin cancer: Controlled drug delivery of 5-ALA and its esters. Advanced Drug Delivery Reviews, 56(1), 77–94.

    Article  CAS  PubMed  Google Scholar 

  74. Moghissi, K., & Dixon, K. (2003). Is bronchoscopic photodynamic therapy a therapeutic option in lung cancer? European Respiratory Journal, 22(3), 535–541.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y., Wang, F., Liu, C., Wang, Z., Kang, L., Huang, Y., Dong, K., Ren, J., & Qu, X. (2018). Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano, 12(1), 651–661.

    Article  CAS  PubMed  Google Scholar 

  76. Chizenga, E. P., & Abrahamse, H. (2020). Nanotechnology in modern photodynamic therapy of cancer: A review of cellular resistance patterns affecting the therapeutic response. Pharmaceutics, 12(7), 632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kato, T., Jin, C. S., Ujiie, H., Lee, D., Fujino, K., Wada, H., Hu, H.-p, Weersink, R. A., Chen, J., & Kaji, M. (2017). Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer, 113, 59–68.

    Article  PubMed  Google Scholar 

  78. Wang, C., Cheng, L., & Liu, Z. (2013). Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, 3(5), 317.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Akbari, T., Pourhajibagher, M., Hosseini, F., Chiniforush, N., Gholibegloo, E., Khoobi, M., Shahabi, S., & Bahador, A. (2017). The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 20, 148–153.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, K., Zhang, Y., Wang, J., Yuan, A., Sun, M., Wu, J., & Hu, Y. (2016). Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  81. Li, W., Peng, J., Tan, L., Wu, J., Shi, K., Qu, Y., Wei, X., & Qian, Z. (2016). Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials, 106, 119–133.

    Article  CAS  PubMed  Google Scholar 

  82. Vankayala, R., Huang, Y. K., Kalluru, P., Chiang, C. S., & Hwang, K. C. (2014). First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small (Weinheim an der Bergstrasse, Germany), 10(8), 1612–1622.

    Article  CAS  PubMed  Google Scholar 

  83. Gu, T., Cheng, L., Gong, F., Xu, J., Li, X., Han, G., & Liu, Z. (2018). Upconversion composite nanoparticles for tumor hypoxia modulation and enhanced near-infrared-triggered photodynamic therapy. ACS Applied Materials & Interfaces, 10(18), 15494–15503.

    Article  CAS  Google Scholar 

  84. Gulzar, A., Xu, J., Yang, D., Xu, L., He, F., Gai, S., & Yang, P. (2020). Correction: Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 49(26), 9164–9165.

    Article  CAS  PubMed  Google Scholar 

  85. Li, Y., Tang, J., Pan, D.-X., Sun, L.-D., Chen, C., Liu, Y., Wang, Y.-F., Shi, S., & Yan, C.-H. (2016). A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano, 10(2), 2766–2773.

    Article  CAS  PubMed  Google Scholar 

  86. Cheng, Y., Cheng, H., Jiang, C., Qiu, X., Wang, K., Huan, W., Yuan, A., Wu, J., & Hu, Y. (2015). Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nature Communications, 6(1), 1–8.

    Article  CAS  Google Scholar 

  87. Gong, H., Chao, Y., Xiang, J., Han, X., Song, G., Feng, L., Liu, J., Yang, G., Chen, Q., & Liu, Z. (2016). Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Letters, 16(4), 2512–2521.

    Article  CAS  PubMed  Google Scholar 

  88. Guo, X., Qu, J., Zhu, C., Li, W., Luo, L., Yang, J., Yin, X., Li, Q., Du, Y., & Chen, D. (2018). Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy. Drug Delivery, 25(1), 585–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luo, Z., Zheng, M., Zhao, P., Chen, Z., Siu, F., Gong, P., Gao, G., Sheng, Z., Zheng, C., & Ma, Y. (2016). Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  90. Chen, H., Tian, J., He, W., & Guo, Z. (2015). H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. Journal of the American Chemical Society, 137(4), 1539–1547.

    Article  CAS  PubMed  Google Scholar 

  91. Peng, J., Yang, Q., Li, W., Tan, L., Xiao, Y., Chen, L., Hao, Y., & Qian, Z. (2017). Erythrocyte-membrane-coated prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. ACS Applied Materials & Interfaces, 9(51), 44410–44422.

    Article  CAS  Google Scholar 

  92. Gao, S., Wang, G., Qin, Z., Wang, X., Zhao, G., Ma, Q., & Zhu, L. (2017). Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials, 112, 324–335.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, D.-W., Li, B., Li, C.-X., Fan, J.-X., Lei, Q., Li, C., Xu, Z., & Zhang, X.-Z. (2016). Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano, 10(9), 8715–8722.

    Article  CAS  PubMed  Google Scholar 

  94. Sheng, Y., Nesbitt, H., Callan, B., Taylor, M. A., Love, M., McHale, A. P., & Callan, J. F. (2017). Oxygen generating nanoparticles for improved photodynamic therapy of hypoxic tumours. Journal of Controlled Release, 264, 333–340.

    Article  CAS  PubMed  Google Scholar 

  95. Kazaal, M., Habeeb, A. A., & Hasan, H. N. (2023). Evaluation Role of IL-13 and Eosinophils in Adult Asthmatic Patients. Journal of Biomedicine and Biochemistry, 2(2), 17-25. doi: 10.57238/jbb.2023.6940.1033

    Article  CAS  PubMed  Google Scholar 

  96. Skupin-Mrugalska, P., Sobotta, L., Kucinska, M., Murias, M., Mielcarek, J., & Duzgunes, N. (2014). Cellular changes, molecular pathways and the immune system following photodynamic treatment. Current Medicinal Chemistry, 21(35), 4059–4073.

    Article  CAS  PubMed  Google Scholar 

  97. Ren, Y., Wang, R., Liu, Y., Guo, H., Zhou, X., Yuan, X., Liu, C., Tian, J., Yin, H., & Wang, Y. (2014). A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials, 35(8), 2462–2470.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, W., Shen, J., Su, H., Mu, G., Sun, J.-H., Tan, C.-P., Liang, X.-J., Ji, L.-N., & Mao, Z.-W. (2016). Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Applied Materials & Interfaces, 8(21), 13332–13340.

    Article  CAS  Google Scholar 

  99. Li, H., Liu, C., Zeng, Y.-P., Hao, Y.-H., Huang, J.-W., Yang, Z.-Y., & Li, R. (2016). Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Applied Materials & Interfaces, 8(46), 31510–31523.

    Article  CAS  Google Scholar 

  100. He, X., Wang, J., Wei, W., Shi, M., Xin, B., Zhang, T., & Shen, X. (2016). Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biology & Therapy, 17(2), 188–198.

    Article  CAS  Google Scholar 

  101. Rosa, P., Catacuzzeno, L., Sforna, L., Mangino, G., Carlomagno, S., Mincione, G., Petrozza, V., Ragona, G., Franciolini, F., & Calogero, A. (2018). BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. Journal of Cellular Physiology, 233(9), 6866–6877.

    Article  CAS  PubMed  Google Scholar 

  102. Yao, C., Wang, W., Wang, P., Zhao, M., Li, X., & Zhang, F. (2018). Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Advanced Materials, 30(7), 1704833.

    Article  Google Scholar 

  103. Theodoraki, M.-N., Lorenz, K., Lotfi, R., Fuerst, D., Tsamadou, C., Jaekle, S., Mytilineos, J., Brunner, C., Theodorakis, J., & Hoffmann, T. (2017). Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis and Photodynamic Therapy, 19, 194–201.

    Article  CAS  PubMed  Google Scholar 

  104. Xu, J., Xu, L., Wang, C., Yang, R., Zhuang, Q., Han, X., Dong, Z., Zhu, W., Peng, R., & Liu, Z. (2017). Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano, 11(5), 4463–4474.

    Article  CAS  PubMed  Google Scholar 

  105. He, C., Duan, X., Guo, N., Chan, C., Poon, C., Weichselbaum, R. R., & Lin, W. (2016). Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nature Communications, 7(1), 1–12.

    Article  Google Scholar 

  106. Majeti, R., Chao, M. P., Alizadeh, A. A., Pang, W. W., Jaiswal, S., Gibbs, K. D., Jr., van Rooijen, N., & Weissman, I. L. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138(2), 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, L., Zhang, L., Yang, L., Li, H., Li, R., Yu, J., Yang, L., Wei, F., Yan, C., & Sun, Q. (2017). Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Frontiers in Immunology, 8, 404.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kaur, S., Elkahloun, A. G., Singh, S. P., Chen, Q.-R., Meerzaman, D. M., Song, T., Manu, N., Wu, W., Mannan, P., & Garfield, S. H. (2016). A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget, 7(9), 10133.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang, X., Zhang, J., Wang, Y., Wang, C., Xiao, J., Zhang, Q., & Cheng, Y. (2016). Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials, 81, 114–124.

    Article  CAS  PubMed  Google Scholar 

  110. Fan, W., Huang, P., & Chen, X. (2016). Overcoming the Achilles’ heel of photodynamic therapy. Chemical Society Reviews, 45(23), 6488–6519.

    Article  CAS  PubMed  Google Scholar 

  111. Li, X., Liu, Y., Fu, F., Cheng, M., Liu, Y., Yu, L., Wang, W., Wan, Y., & Yuan, Z. (2019). Single NIR laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Letters, 11, 1–19.

    Article  Google Scholar 

  112. You, Q., Sun, Q., Wang, J., Tan, X., Pang, X., Liu, L., Yu, M., Tan, F., & Li, N. (2017). A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2. Nanoscale, 9(11), 3784–3796.

    Article  CAS  PubMed  Google Scholar 

  113. Cao, Y., Dong, H., Yang, Z., Zhong, X., Chen, Y., Dai, W., & Zhang, X. (2017). Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Applied Materials & Interfaces, 9(1), 159–166.

    Article  CAS  Google Scholar 

  114. Chupradit S, Jasim SA, Bokov D, Mahmoud MZ, Roomi AB, Hachem K, Rudiansyah M, Suksatan W, Bidares R. Recent advances in biosensor devices for HER-2 cancer biomarker detection. Analytical Methods. 2022;14(13):1301-10.

    Article  Google Scholar 

  115. Dai, X., Zhao, Y., Yu, Y., Chen, X., Wei, X., Zhang, X., & Li, C. (2017). Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Applied Materials & Interfaces, 9(36), 30470–30479.

    Article  CAS  Google Scholar 

  116. Sun, Q., He, F., Bi, H., Wang, Z., Sun, C., Li, C., Xu, J., Yang, D., Wang, X., & Gai, S. (2019). An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chemical Engineering Journal, 362, 679–691.

    Article  CAS  Google Scholar 

  117. Younis, M. R., Wang, C., An, R., Wang, S., Younis, M. A., Li, Z.-Q., Wang, Y., Ihsan, A., Ye, D., & Xia, X.-H. (2019). Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano, 13(2), 2544–2557.

    CAS  PubMed  Google Scholar 

  118. Mohammed Sulaiman, A.-Z., Raoof Rahed, K., & Abdulahmeed Midhat, T. (2022). Detection of Human Herpesvirus 8 Antibodies in Women with Breast Cancer in Kirkuk city. Al-Kitab Journal for Pure Sciences, 3(2), 1–9. https://doi.org/10.32441/kjps.03.02.p1

    Article  CAS  PubMed  Google Scholar 

  119. Wang, X.-Q., Peng, M., Li, C.-X., Zhang, Y., Zhang, M., Tang, Y., Liu, M.-D., Xie, B.-R., & Zhang, X.-Z. (2018). Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Letters, 18(11), 6804–6811.

    Article  CAS  PubMed  Google Scholar 

  120. Xu, Y., Qi, J., Yang, X., Wu, E., & Qian, S. Y. (2014). Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil׳ s cytotoxicity. Redox Biology, 2, 610–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, Y., Bhattarai, P., Dai, Z., & Chen, X. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 48(7), 2053–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, Z., Liu, J., Hu, Y., Howard, K. A., Li, Z., Fan, X., Chang, M., Sun, Y., Besenbacher, F., & Chen, C. (2016). Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano, 10(10), 9646–9658.

    Article  CAS  PubMed  Google Scholar 

  123. Qin, F., Zhao, H., Li, G., Yang, H., Li, J., Wang, R., Liu, Y., Hu, J., Sun, H., & Chen, R. (2014). Size-tunable fabrication of multifunctional Bi 2 O 3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale, 6(10), 5402–5409.

    Article  CAS  PubMed  Google Scholar 

  124. Henderson, T. A., & Morries, L. D. (2015). Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatric Disease and Treatment. https://doi.org/10.2147/NDT.S78182

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nam, J., Son, S., Ochyl, L. J., Kuai, R., Schwendeman, A., & Moon, J. J. (2018). Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 9(1), 1074.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Maruoka, Y., Nagaya, T., Sato, K., Ogata, F., Okuyama, S., Choyke, P. L., & Kobayashi, H. (2018). Near infrared photoimmunotherapy with combined exposure of external and interstitial light sources. Molecular Pharmaceutics, 15(9), 3634–3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Antaris, A. L., Robinson, J. T., Yaghi, O. K., Hong, G., Diao, S., Luong, R., & Dai, H. (2013). Ultra-low doses of chirality sorted (6, 5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano, 7(4), 3644–3652.

    Article  CAS  PubMed  Google Scholar 

  128. Chen, F., & Cai, W. (2015). Nanomedicine for targeted photothermal cancer therapy: Where are we now? Nanomedicine, 10(1), 1–3.

    Article  PubMed  Google Scholar 

  129. Zhu, H., Li, J., Qi, X., Chen, P., & Pu, K. (2018). Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Letters, 18(1), 586–594.

    Article  CAS  PubMed  Google Scholar 

  130. Lu, K., He, C., Guo, N., Chan, C., Ni, K., Weichselbaum, R. R., & Lin, W. (2016). Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. Journal of the American Chemical Society, 138(38), 12502–12510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, J., Xie, C., Huang, J., Jiang, Y., Miao, Q., & Pu, K. (2018). Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angewandte Chemie International Edition, 57(15), 3995–3998.

    Article  CAS  PubMed  Google Scholar 

  132. Cano-Mejia, J., Burga, R. A., Sweeney, E. E., Fisher, J. P., Bollard, C. M., Sandler, A. D., Cruz, C. R. Y., & Fernandes, R. (2017). Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 771–81.

    Article  CAS  PubMed  Google Scholar 

  133. A. Samad, A., & B. Kanbar, C. (2022). Prevalence of Bronchial Asthma among Patients attending Tertiary Allergy center /Kirkuk / Iraq. Al-Kitab Journal for Pure Sciences, 3(2), 120–130. https://doi.org/10.32441/kjps.03.02.p10

    Article  Google Scholar 

  134. Duan, X., Chan, C., Guo, N., Han, W., Weichselbaum, R. R., & Lin, W. (2016). Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. Journal of the American Chemical Society, 138(51), 16686–16695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Self-funded by the authors.

Author information

Authors and Affiliations

Authors

Contributions

ATJ: conceptualization, investigation, writing—original/revised draft, writing—review and editing, visualization, supervision, and project administration. NGAl-F, LRAl-A, MAR, JHZAl-T, MSM, RTA, RSZ, and FAl-H: investigation, writing—original/revised draft. All co-authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abduladheem Turki Jalil.

Ethics declarations

Conflict of interest

None to declare.

Ethical Approval

Non applicable.

Consent to Participant

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, A.T., Al-Fatlawi, N.G., Al-Ameer, L.R. et al. Nanotechnology Potent Photothermal and Photodynamic Immunotherapies of Cancer. J. Med. Biol. Eng. 43, 649–662 (2023). https://doi.org/10.1007/s40846-023-00836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00836-6

Keywords

Navigation