Skip to main content
Log in

Parameter Study on How the Cervical Disc Degeneration Affects the Segmental Instantaneous Centre of Rotation

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Methods

Four degenerated models (anterior osteophyte enlargement, intervertebral disc height loss, endplates curvature flattening, and degeneration of the disc material properties) were established by appropriately modifying the geometry or material properties of a single segment (C5/6) using the finite element approach (FEA). A 73.6 N follower load and a pure moment load of 1 N-m simulated to physiological motion were applied to all FEA models and motion paths of the ICR were compared.

Results

The variable “intervertebral disc height loss” had the most pronounced effect on the motion path of the ICR of the degenerated segment, and the mean ICR locations of the degenerative models with different degrees of “intervertebral disc height loss” moved markedly forward at the degenerated segment.

Conclusion

Abnormal ICR motion patterns should be noted during prostheses design and surgical strategy development in the clinic and that abnormally located ICR motion paths need restoring to normal physiological positions. The results of this paper may provide valuable reference for the future design of prostheses that mimic the morphology of the human intervertebral disc based on the ICR locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available

from the corresponding author on reasonable request.

References

  1. Guo, Z., Cui, W., Sang, D. C., Sang, H. P., & Liu, B. G. (2019). Clinical relevance of cervical kinematic quality parameters in Planar Movement. Orthopaedic Surgery, 11, 167–175. https://doi.org/10.1111/os.12435

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderst, W., Baillargeon, E., Donaldson, W., Lee, J., & Kang, J. (2013). Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality after arthrodesis. Spine, 38, E594–601. https://doi.org/10.1097/BRS.0b013e31828ca5c7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sang, D., Cui, W., Guo, Z., Sang, H., & Liu, B. (2020). The differences among kinematic parameters for evaluating the quality of intervertebral motion of the cervical spine in clinical and experimental studies: concepts, research and measurement techniques. A Literature Review World Neurosurgery, 133, 343-357e341. https://doi.org/10.1016/j.wneu.2019.09.075

    Article  PubMed  Google Scholar 

  4. Bogduk, N., & Mercer, S. (2000). Biomechanics of the cervical spine. I: normal kinematics. Clinical biomechanics (Bristol Avon), 15, 633–648. https://doi.org/10.1016/s0268-0033(00)00034-6.

    Article  CAS  PubMed  Google Scholar 

  5. Bogduk, N., Amevo, B., & Pearcy, M. (1995). A biological basis for instantaneous centres of rotation of the vertebral column. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 209, 177–183. https://doi.org/10.1243/pime_proc_1995_209_341_02

    Article  CAS  PubMed  Google Scholar 

  6. Amevo, B., Aprill, C., & Bogduk, N. (1992). Abnormal instantaneous axes of rotation in patients with neck pain. Spine, 17, 748–756. https://doi.org/10.1097/00007632-199207000-00004.

    Article  CAS  PubMed  Google Scholar 

  7. Muhlbauer, M., Tomasch, E., Sinz, W., Trattnig, S., & Steffan, H. (2020). In cervical arthroplasty, only prosthesis with flexible biomechanical properties should be used for achieving a near-physiological motion pattern. Journal of orthopaedic surgery and research, 15, 391. https://doi.org/10.1186/s13018-020-01908-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cui, W., Wu, B., Liu, B., Li, D., Wang, L., & Ma, S. (2019). Adjacent segment motion following multi-level ACDF: a kinematic and clinical study in patients with zero-profile anchored spacer or plate. European spine journal: official publication of the European spine society, the European spinal deformity society, and the European section of the cervical. Spine Research Society, 28, 2408–2416. https://doi.org/10.1007/s00586-019-06109-8

    Article  Google Scholar 

  9. Zhong, Z. M., Zhu, S. Y., Zhuang, J. S., Wu, Q., & Chen, J. T. (2016). Reoperation after cervical disc arthroplasty versus anterior cervical discectomy and fusion: A meta-analysis. Clinical Orthopaedics and Related Research, 474, 1307–1316. https://doi.org/10.1007/s11999-016-4707-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murrey, D., Janssen, M., Delamarter, R., Goldstein, J., Zigler, J., Tay, B., & Darden, B. (2009). Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease. The Spine Journal: Official journal of the North American Spine Society, 9, 275–286. https://doi.org/10.1016/j.spinee.2008.05.006

    Article  PubMed  Google Scholar 

  11. Puttlitz, C. M., Rousseau, M. A., Xu, Z., Hu, S., Tay, B. K., & Lotz, J. C. (2004). Intervertebral disc replacement maintains cervical spine kinetics. Spine, 29, 2809–2814. https://doi.org/10.1097/01.brs.0000147739.42354.a9.

    Article  PubMed  Google Scholar 

  12. DiAngelo, D. J., Foley, K. T., Morrow, B. R., Schwab, J. S., Song, J., German, J. W., & Blair, E. (2004). In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurgical focus, 17, E7.

    Article  PubMed  Google Scholar 

  13. Zhou, H. H., Qu, Y., Dong, R. P., Kang, M. Y., & Zhao, J. W. (2015). Does heterotopic ossification affect the outcomes of cervical total disc replacement? A meta-analysis. Spine, 40, E332–340. https://doi.org/10.1097/brs.0000000000000776.

    Article  PubMed  Google Scholar 

  14. Liu, B., Liu, Z., VanHoof, T., Kalala, J., Zeng, Z., & Lin, X. (2014). Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc. European spine journal: official publication of the European spine Society, the European spinal deformity Society, and the European section of the cervical. Spine Research Society, 23, 2307–2313. https://doi.org/10.1007/s00586-014-3431-7

    Article  Google Scholar 

  15. Sang, H., Cui, W., Sang, D., Guo, Z., & Liu, B. (2020). How center of rotation changes and what affects these after cervical arthroplasty: A systematic review and meta-analysis. World Neurosurgery, 135, e702–e709. https://doi.org/10.1016/j.wneu.2019.12.111

    Article  PubMed  Google Scholar 

  16. Pickett, G. E., Rouleau, J. P., & Duggal, N. (2005). Kinematic analysis of the cervical spine following implantation of an artificial cervical disc. Spine, 30, 1949–1954. https://doi.org/10.1097/01.brs.0000176320.82079.ce.

    Article  PubMed  Google Scholar 

  17. Staudt, M. D., Das, K., & Duggal, N. (2018). Does design matter? Cervical disc replacements under review. Neurosurgical review, 41, 399–407. https://doi.org/10.1007/s10143-016-0765-0.

    Article  PubMed  Google Scholar 

  18. Rousseau, M. A., Bradford, D. S., Bertagnoli, R., Hu, S. S., & Lotz, J. C. (2006). Disc arthroplasty design influences intervertebral kinematics and facet forces. The spine journal: official journal of the North American Spine Society, 6, 258–266. https://doi.org/10.1016/j.spinee.2005.07.004.

    Article  PubMed  Google Scholar 

  19. Sang, D., Du, C. F., Wu, B., Cai, X. Y., Cui, W., Yuchi, C. X., Rong, T., Sang, H., & Liu, B. (2021). The effect of cervical intervertebral disc degeneration on the motion path of instantaneous center of rotation at degenerated and adjacent segments: A finite element analysis. Computers in Biology and Medicine, 134, 104426. https://doi.org/10.1016/j.compbiomed.2021.104426

    Article  PubMed  Google Scholar 

  20. Mo, Z., Li, Q., Jia, Z., Yang, J., Wong, D. W., & Fan, Y. (2017). Biomechanical consideration of prosthesis selection in hybrid surgery for bi-level cervical disc degenerative diseases. European spine journal: Official publication of the European spine society, the European spinal deformity society, and the European section of the cervical. Spine Research Society, 26, 1181–1190. https://doi.org/10.1007/s00586-016-4777-9

    Article  Google Scholar 

  21. Cai, X. Y., Sang, D., Yuchi, C. X., Cui, W., Zhang, C., Du, C. F., & Liu, B. (2020). Using finite element analysis to determine effects of the motion loading method on facet joint forces after cervical disc degeneration. Computers in biology and medicine, 116, 103519. https://doi.org/10.1016/j.compbiomed.2019.103519.

    Article  PubMed  Google Scholar 

  22. Hua, W., Zhi, J., Ke, W., Wang, B., Yang, S., Li, L., & Yang, C. (2020). Adjacent segment biomechanical changes after one- or two-level anterior cervical discectomy and fusion using either a zero-profile device or cage plus plate: A finite element analysis. Computers in Biology and Medicine, 120, 103760. https://doi.org/10.1016/j.compbiomed.2020.103760

    Article  PubMed  Google Scholar 

  23. Nikkhoo, M., Cheng, C. H., Wang, J. L., Khoz, Z., El-Rich, M., Hebela, N., & Khalaf, K. (2019). Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications. Computers in biology and medicine, 109, 22–32. https://doi.org/10.1016/j.compbiomed.2019.04.010.

    Article  PubMed  Google Scholar 

  24. Yuchi, C. X., Sun, G., Chen, C., Liu, G., Zhao, D., Yang, H., Xu, B., Deng, S., Ma, X., Du, C. F., & Yang, Q. (2019). Comparison of the biomechanical changes after percutaneous full-endoscopic anterior cervical discectomy versus posterior cervical foraminotomy at C5-C6: A finite element-based study. World Neurosurgery, 128, e905–e911. https://doi.org/10.1016/j.wneu.2019.05.025

    Article  PubMed  Google Scholar 

  25. Goel, V. K., & Clausen, J. D. (1998). Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach. Spine, 23, 684–691. https://doi.org/10.1097/00007632-199803150-00008.

    Article  CAS  PubMed  Google Scholar 

  26. Clausen, J. D., Goel, V. K., Traynelis, V. C., & Scifert, J. (1997). Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: Quantification using a finite element model of the C5-C6 segment. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 15, 342–347. https://doi.org/10.1002/jor.1100150305

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Q. H., Teo, E. C., & Ng, H. W. (2005). Development and validation of a CO-C7 FE complex for biomechanical study. Journal of Biomechanical Engineering, 127, 729–735. https://doi.org/10.1115/1.1992527

    Article  PubMed  Google Scholar 

  28. Wheeldon, J. A., Stemper, B. D., Yoganandan, N., & Pintar, F. A. (2008). Validation of a finite element model of the young normal lower cervical spine. Annals of biomedical engineering, 36, 1458–1469. https://doi.org/10.1007/s10439-008-9534-8.

    Article  PubMed  Google Scholar 

  29. Dong, L., Li, G., Mao, H., Marek, S., & Yang, K. H. (2013). Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Annals of biomedical engineering, 41, 2538–2552. https://doi.org/10.1007/s10439-013-0858-7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deng, Z., Wang, K., Wang, H., Lan, T., Zhan, H., & Niu, W. (2017). A finite element study of traditional chinese cervical manipulation. European spine journal: official publication of the european spine Society, the european spinal deformity Society, and the european section of the cervical. Spine Research Society, 26, 2308–2317. https://doi.org/10.1007/s00586-017-5193-5.

    Article  Google Scholar 

  31. Yoganandan, N., Kumaresan, S., & Pintar, F. A. (2000). Geometric and mechanical properties of human cervical spine ligaments. Journal of Biomechanical Engineering, 122, 623–629. https://doi.org/10.1115/1.1322034

    Article  CAS  PubMed  Google Scholar 

  32. Samartzis, D., Shen, F. H., Lyon, C., Phillips, M., Goldberg, E. J., & An, H. S. (2004). Does rigid instrumentation increase the fusion rate in one-level anterior cervical discectomy and fusion? The Spine Journal: Official Journal of the North American Spine Society, 4, 636–643. https://doi.org/10.1016/j.spinee.2004.04.010

    Article  PubMed  Google Scholar 

  33. Kumaresan, S., Yoganandan, N., Pintar, F. A., Maiman, D. J., & Goel, V. K. (2001). Contribution of disc degeneration to osteophyte formation in the cervical spine: A biomechanical investigation. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 19, 977–984. https://doi.org/10.1016/s0736-0266(01)00010-9

    Article  CAS  PubMed  Google Scholar 

  34. Hussain, M., Natarajan, R. N., Chaudhary, G., An, H. S., & Andersson, G. B. (2012). Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: A poroelastic C3-T1 finite element model study. Journal of Spinal Disorders & Techniques, 25, 218–225. https://doi.org/10.1097/BSD.0b013e3182159776

    Article  Google Scholar 

  35. Li, Y., & Lewis, G. (2010). Association between extent of simulated degeneration of C5-C6 disc and biomechanical parameters of a model of the full cervical spine: A finite element analysis study. Journal of Applied Biomaterials & Biomechanics: JABB, 8, 191–199.

    Article  Google Scholar 

  36. Schmidt, H., Kettler, A., Rohlmann, A., Claes, L., & Wilke, H. J. (2007). The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis. Clinical biomechanics (Bristol Avon), 22, 988–998. https://doi.org/10.1016/j.clinbiomech.2007.07.008.

    Article  PubMed  Google Scholar 

  37. Galbusera, F., Schmidt, H., Neidlinger-Wilke, C., Gottschalk, A., & Wilke, H. J. (2011). The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models. European spine journal: official publication of the European spine society, the European spinal deformity society, and the European section of the cervical. Spine Research Society, 20, 563–571. https://doi.org/10.1007/s00586-010-1586-4

    Article  Google Scholar 

  38. He, X., Liang, A., Gao, W., Peng, Y., Zhang, L., Liang, G., & Huang, D. (2012). The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine, 37, E1068–1073. https://doi.org/10.1097/BRS.0b013e31825640eb.

    Article  PubMed  Google Scholar 

  39. Du, C. F., Yang, N., Guo, J. C., Huang, Y. P., & Zhang, C. (2016). Biomechanical response of lumbar facet joints under follower preload: A finite element study. BMC Musculoskeletal Disorders, 17, 126. https://doi.org/10.1186/s12891-016-0980-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Galbusera, F., Bellini, C. M., Raimondi, M. T., Fornari, M., & Assietti, R. (2008). Cervical spine biomechanics following implantation of a disc prosthesis. Medical Engineering & Physics, 30, 1127–1133. https://doi.org/10.1016/j.medengphy.2008.02.002

    Article  Google Scholar 

  41. Rong, X., Gong, Q., Liu, H., Hong, Y., Lou, J., Wu, W., Meng, Y., Chen, H., & Song, Y. (2014). The effect of deviated center of rotation on flexion-extension range of motion after single-level cervical arthroplasty: An in vivo study. Spine, 39, B12-18. https://doi.org/10.1097/brs.0000000000000634

    Article  PubMed  Google Scholar 

  42. Rousseau, M. A., Bonnet, X., & Skalli, W. (2008). Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: A finite element study. Spine, 33, E10-14. https://doi.org/10.1097/BRS.0b013e31815e62ea

    Article  PubMed  Google Scholar 

  43. Liu, B., Zeng, Z., Hoof, T. V., Kalala, J. P., Liu, Z., & Wu, B. (2015). Comparison of hybrid constructs with 2-level artificial disc replacement and 2-level anterior cervical discectomy and fusion for surgical reconstruction of the cervical spine: A kinematic study in whole cadavers. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 21, 1031–1037. https://doi.org/10.12659/msm.892712

    Article  PubMed  Google Scholar 

  44. Hussain, M., Natarajan, R. N., An, H. S., & Andersson, G. B. (2010). Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: A poroelastic C3-T1 finite element model study. Spine, 35, 939–947. https://doi.org/10.1097/BRS.0b013e3181bd419b

    Article  PubMed  Google Scholar 

  45. Hussain, M., Natarajan, R. N., An, H. S., & Andersson, G. B. (2010). Reduction in segmental flexibility because of disc degeneration is accompanied by higher changes in facet loads than changes in disc pressure: A poroelastic C5-C6 finite element investigation. The Spine Journal: Official Journal of the North American Spine Society, 10, 1069–1077. https://doi.org/10.1016/j.spinee.2010.09.012

    Article  PubMed  Google Scholar 

  46. Liu, B., Wu, B., Van Hoof, T., Okito, J. P., Liu, Z., & Zeng, Z. (2015). Are the standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc degeneration? Journal of Neurosurgery Spine, 23, 274–279. https://doi.org/10.3171/2015.1.spine14489

    Article  PubMed  Google Scholar 

  47. Simpson, A. K., Biswas, D., Emerson, J. W., Lawrence, B. D., & Grauer, J. N. (2008). Quantifying the effects of age, gender, degeneration, and adjacent level degeneration on cervical spine range of motion using multivariate analyses. Spine, 33, 183–186. https://doi.org/10.1097/BRS.0b013e31816044e8.

    Article  PubMed  Google Scholar 

  48. Miyazaki, M., Hong, S. W., Yoon, S. H., Zou, J., Tow, B., Alanay, A., Abitbol, J. J., & Wang, J. C. (2008). Kinematic analysis of the relationship between the grade of disc degeneration and motion unit of the cervical spine. Spine, 33, 187–193. https://doi.org/10.1097/BRS.0b013e3181604501.

    Article  PubMed  Google Scholar 

  49. ten Have, H. A., & Eulderink, F. (1981). Mobility and degenerative changes of the ageing cervical spine. A macroscopic and statistical study. Gerontology, 27, 42–50. https://doi.org/10.1159/000212448.

    Article  PubMed  Google Scholar 

  50. ten Have, H. A., & Eulderink, F. (1980). Degenerative changes in the cervical spine and their relationship to its mobility. The Journal of Pathology, 132, 133–159. https://doi.org/10.1002/path.1711320205

    Article  PubMed  Google Scholar 

  51. Dai, L. (1998). Disc degeneration and cervical instability. Correlation of magnetic resonance imaging with radiography. Spine, 23, 1734–1738. https://doi.org/10.1097/00007632-199808150-00005.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt, H., Heuer, F., & Wilke, H. J. (2009). Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Medical Engineering & Physics, 31, 642–649. https://doi.org/10.1016/j.medengphy.2008.12.004

    Article  Google Scholar 

  53. Amevo, B., Worth, D., & Bogduk, N. (1991). Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin Biomech (Bristol Avon), 6(2), 111–117. https://doi.org/10.1016/0268-0033(91)90008-E.

    Article  CAS  PubMed  Google Scholar 

  54. Kim, S. H., Ham, D. W., Lee, J. I., Park, S. W., & Ko, M. J. (2019). Locating the instant center of rotation in the subaxial cervical spine with biplanar fluoroscopy during in vivo dynamic flexion-extension. Clinics in Orthopedic Surgery, 11, 482–489. https://doi.org/10.4055/cios.2019.11.4.482

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jonas, R., Demmelmaier, R., Hacker, S. P., & Wilke, H. J. (2017). Comparison of three-dimensional helical axes of the cervical spine between in vitro and in vivo testing. Spine, 18, 515–524. https://doi.org/10.1016/j.spinee.2017.10.065.

    Article  Google Scholar 

  56. Wawrose, R. A., Howington, F. E., LeVasseur, C. M., & Smith, C. N. (2020). Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 39, 1217–1226. https://doi.org/10.1002/jor.24702

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Q. H., Teo, E. C., Ng, H. W., & Lee, V. S. (2006). Finite element analysis of moment-rotation relationships for human cervical spine. Journal of Biomechanics, 39, 189–193. https://doi.org/10.1016/j.jbiomech.2004.10.029

    Article  PubMed  Google Scholar 

  58. Verma, K., Gandhi, S. D., Maltenfort, M., Albert, T. J., Hilibrand, A. S., Vaccaro, A. R., & Radcliff, K. E. (2013). Rate of adjacent segment disease in cervical disc arthroplasty versus single-level fusion: meta-analysis of prospective studies. Spine, 38, 2253–2257. https://doi.org/10.1097/BRS.0000000000000052.

    Article  PubMed  Google Scholar 

  59. Yi, S., Shin, D. A., Kim, K. N., Choi, G., Shin, H. C., Kim, K. S., & Yoon, D. H. (2013). The predisposing factors for the heterotopic ossification after cervical artificial disc replacement. Spine, 13, 1048–1054. https://doi.org/10.1016/j.spinee.2013.02.036.

    Article  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (NSFC Nos. 11602172, 12072233), National Natural Science Foundation of Tianjin (No. 21JCYBJC01210), and Key Laboratory of spine and spinal cord injury repair and regeneration (Tongji University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

HZ, BZ, Y-NR, XW, J-JF, C-FD, and RZ carried out the model development and simulation and data analysis and drafted the manuscript. HZ, C-FD, and RZ participated in the study design. HZ, C-FD, XW, and RZ participated in revising the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng-Fei Du, Baoge Liu or Rui Zhu.

Ethics declarations

Competing Interests

The authors have no relevant financial or nonfinancial interests to disclose.

Ethical Approval

Not applicable.

Consent to Publication

All the authors consented to publication.

Consent to Participate

Written informed consent was obtained from all participants included in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sang, D., Zhang, B. et al. Parameter Study on How the Cervical Disc Degeneration Affects the Segmental Instantaneous Centre of Rotation. J. Med. Biol. Eng. 43, 163–175 (2023). https://doi.org/10.1007/s40846-023-00779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00779-y

Keywords

Navigation