Skip to main content

Advertisement

Log in

Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects

  • Review Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Although plenty of research and reviews focus on the medical applications of nanomaterials, the use of nanomaterials as pharmaceuticals is still rarely approved. Intravenous injections of theranostic nanomaterials are a common route for in vivo studies. However, the consideration of using nanomaterials for prevalent drug carriers is still limited because they are inevitably accumulated in vital organs. This review focused on contemporary radiolabeled nanomaterials and potent immunological responses that have been reported in preclinical and clinical studies.

Methods

In general, nanomaterials can conjugate with different targeting or therapeutic entities to treat diseases in vivo, and certain materials may generate fluorescence or heat by external photoexcitation. Both inorganic and organic nanomaterials used for conjugation of radionuclides for diagnosis or therapy in vivo are discussed.

Results

Most nanomaterials are claimed to contain low cytotoxicity, and the immunological responses resulted from nanomaterials are versatile. The induced immunity is a benefit for adjuvant therapy in cancer treatment. However, the systemic effects are yet to be investigated. The organic polymer dots exhibit ultrabright near-infrared II fluorescence that can be used for imaging of tumor angiogenesis, and enhanced permeability and retention effects. This nanomaterial should be ideal for clinical application after conjugation with approved radionuclides.

Conclusion

Nanomaterials are candidates for theranostic purposes, although their biosafety is still a challenge. The immunomodulation by specific nanomaterials is particularly interesting because radionuclide-conjugated nanoparticles may contribute to the concept of combined radiotherapy and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Permissions were not required according to the responses from journal publishers.)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Price, E. W., & Orvig, C. (2014). Matching chelators to radiometals for radiopharmaceuticals. Chemical Society Reviews, 43(1), 260–290

    Article  PubMed  CAS  Google Scholar 

  2. Ni, D., Jiang, D., Ehlerding, E. B., Huang, P., & Cai, W. (2018). Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Accounts Of Chemical Research, 51(3), 778–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hwang, D. W., Ko, H. Y., Lee, J. H., Kang, H., Ryu, S. H., Song, I. C. … Kim, S. (2010). A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. Journal Of Nuclear Medicine, 51(1), 98–105

    Article  PubMed  CAS  Google Scholar 

  4. Cai, Z., Chattopadhyay, N., Yang, K., Kwon, Y. L., Yook, S., Pignol, J. P., & Reilly, R. M. (2016). (111)In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nuclear Medicine And Biology, 43(12), 818–826

    Article  PubMed  CAS  Google Scholar 

  5. Chen, C. C., Chang, D. Y., Li, J. J., Chan, H. W., Chen, J. T., Chang, C. H. … Wang, H. E. (2020). Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J Mater Chem B, 8(1), 65–77

    Article  PubMed  CAS  Google Scholar 

  6. Kao, H. W., Lin, Y. Y., Chen, C. C., Chi, K. H., Tien, D. C., Hsia, C. C. … Wang, H. E. (2014). Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology, 25(29), 295102

    Article  PubMed  Google Scholar 

  7. Zhang, Y., Hong, H., & Cai, W. (2011). PET tracers based on Zirconium-89. Curr Radiopharm, 4(2), 131–139

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dijkers, E. C., Kosterink, J. G., Rademaker, A. P., Perk, L. R., van Dongen, G. A., Bart, J. … de Vries, E. G. (2009). Lub-de Hooge MN: Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. Journal Of Nuclear Medicine, 50(6), 974–981

    Article  PubMed  CAS  Google Scholar 

  9. Rylova, S. N., Del Pozzo, L., Klingeberg, C., Tonnesmann, R., Illert, A. L., Meyer, P. T. … Holland, J. P. (2016). Immuno-PET Imaging of CD30-Positive Lymphoma Using 89Zr-Desferrioxamine-Labeled CD30-Specific AC-10 Antibody. Journal Of Nuclear Medicine, 57(1), 96–102

    Article  PubMed  Google Scholar 

  10. Karmani, L., Labar, D., Valembois, V., Bouchat, V., Nagaswaran, P. G., Bol, A., Gillart, J., Leveque, P., Bouzin, C., Bonifazi, D., et al. (2013). Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media & Molecular Imaging, 8(5), 402–408

    Article  CAS  Google Scholar 

  11. Sobol, N. B., Korsen, J. A., Younes, A., Edwards, K. J., & Lewis, J. S. (2020). : ImmunoPET Imaging of Pancreatic Tumors with (89)Zr-Labeled Gold Nanoparticle-Antibody Conjugates. Mol Imaging Biol

  12. Bansal, A., Pandey, M. K., Demirhan, Y. E., Nesbitt, J. J., Crespo-Diaz, R. J., Terzic, A. … DeGrado, T. R. (2015). Novel (89)Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Res, 5, 19

    Article  PubMed  PubMed Central  Google Scholar 

  13. Man, F., Lim, L., Volpe, A., Gabizon, A., Shmeeda, H., Draper, B., Parente-Pereira, A. C., Maher, J., Blower, P. J., Fruhwirth, G. O., et al. (2019). In Vivo PET Tracking of (89)Zr-Labeled Vgamma9Vdelta2 T Cells to Mouse Xenograft Breast Tumors Activated with Liposomal Alendronate. Molecular Therapy, 27(1), 219–229

    Article  PubMed  CAS  Google Scholar 

  14. Menke-van der Houven, van Oordt, C. W., Gootjes, E. C., Huisman, M. C., Vugts, D. J., Roth, C., Luik, A. M., Mulder, E. R., Schuit, R. C., Boellaard, R., Hoekstra, O. S., et al. (2015). 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget, 6(30), 30384–30393

    Article  Google Scholar 

  15. Lee, H. Y., Li, Z., Chen, K., Hsu, A. R., Xu, C., Xie, J. … Chen, X. (2008). PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles. Journal of Nuclear Medicine, 49(8), 1371–1379

    Article  PubMed  CAS  Google Scholar 

  16. Lledos, M., Mirabello, V., Sarpaki, S., Ge, H., Smugowski, H. J., Carroll, L., Aboagye, E. O., Aigbirhio, F. I., Botchway, S. W., Dilworth, J. R., et al. (2018). : Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics. ChemNanoMat 4(4):361–372

  17. Bhirde, A., Xie, J., Swierczewska, M., & Chen, X. (2011). Nanoparticles for cell labeling. Nanoscale, 3(1), 142–153

    Article  PubMed  CAS  Google Scholar 

  18. Li, H., Diaz, L., Lee, D., Cui, L., Liang, X., & Cheng, Y. (2014). In vivo imaging of T cells loaded with gold nanoparticles: a pilot study. La Radiologia Medica, 119(4), 269–276

    Article  PubMed  Google Scholar 

  19. Bhatnagar, P., Li, Z., Choi, Y., Guo, J., Li, F., Lee, D. Y., Figliola, M., Huls, H., Lee, D. A., Zal, T., et al. (2013). Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper-64. Integr Biol (Camb), 5(1), 231–238

    Article  PubMed Central  CAS  Google Scholar 

  20. Cheng, S. H., Yu, D., Tsai, H. M., Morshed, R. A., Kanojia, D., Lo, L. W., Leoni, L., Govind, Y., Zhang, L., Aboody, K. S., et al. (2016). Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal Of Nuclear Medicine, 57(2), 279–284

    Article  PubMed  CAS  Google Scholar 

  21. Song, L., Falzone, N., & Vallis, K. A. (2016). EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. International Journal Of Radiation Biology, 92(11), 716–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zolata, H., Afarideh, H., & Davani, F. A. (2016). Triple Therapy of HER2(+) Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field. Cancer Biotherapy & Radiopharmaceuticals, 31(9), 324–329

    Article  CAS  Google Scholar 

  23. Dash, A., Pillai, M. R., & Knapp, F. F. Jr. (2015). Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl Med Mol Imaging, 49(2), 85–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Strosberg, J., El-Haddad, G., Wolin, E., Hendifar, A., Yao, J., Chasen, B., Mittra, E., Kunz, P. L., Kulke, M. H., Jacene, H., et al. (2017). Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. New England Journal Of Medicine, 376(2), 125–135

    Article  PubMed  CAS  Google Scholar 

  25. Assadi, M., Pirayesh, E., Rekabpour, S. J., Zohrabi, F., Jafari, E., Nabipour, I. … Ahmadzadehfar, H. (2019). 177Lu-PSMA and 177Lu-DOTATATE Therapy in a Patient With Metastatic Castration-Resistant Prostate Cancer and Neuroendocrine Differentiation. Clinical Nuclear Medicine, 44(12), 978–980

    Article  PubMed  Google Scholar 

  26. Luna-Gutiérrez, M., Ferro-Flores, G., Ocampo-García, B. E., Santos-Cuevas, C. L., Jiménez-Mancilla, N., León-Rodríguez, D. … Isaac-Olivé, K. (2013). A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. Journal of the Mexican Chemical Society, 57(3), 212–219

    Google Scholar 

  27. Vilchis-Juarez, A., Ferro-Flores, G., Santos-Cuevas, C., Morales-Avila, E., Ocampo-Garcia, B., Diaz-Nieto, L. … Gomez-Olivan, L. (2014). Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. Journal Of Biomedical Nanotechnology, 10(3), 393–404

    Article  PubMed  CAS  Google Scholar 

  28. Yook, S., Cai, Z., Lu, Y., Winnik, M. A., Pignol, J. P., & Reilly, R. M. (2015). : Radiation Nanomedicine for EGFR-Positive Breast Cancer: Panitumumab-Modified Gold Nanoparticles Complexed to the beta-Particle-Emitter, (177) Lu Mol Pharm 12(11):3963–3972

  29. Yook, S., Cai, Z., Lu, Y., Winnik, M. A., Pignol, J. P., & Reilly, R. M. (2016). Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. Journal Of Nuclear Medicine, 57(6), 936–942

    Article  PubMed  CAS  Google Scholar 

  30. Lusic, H., & Grinstaff, M. W. (2013). X-ray-computed tomography contrast agents. Chemical Reviews, 113(3), 1641–1666

    Article  PubMed  CAS  Google Scholar 

  31. Hong, C. M., & Ahn, B. C. (2017). Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer for Reapplication of I-131 Therapy. Front Endocrinol (Lausanne), 8, 260

    Article  Google Scholar 

  32. Kim, S. H., Kim, E. M., Lee, C. M., Kim, D. W., Lim, S. T., Sohn, M. H., & Jeong, H. J. (2012). Synthesis of PEG-Iodine-Capped Gold Nanoparticles and Their Contrast Enhancement in < i > In Vitro and < i > In Vivo for X-Ray/CT. Journal of Nanomaterials, 2012, 504026

    Article  Google Scholar 

  33. Liu, Y., Ashton, J. R., Moding, E. J., Yuan, H., Register, J. K., Fales, A. M., Choi, J., Whitley, M. J., Zhao, X., Qi, Y., et al. (2015). A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy. Theranostics, 5(9), 946–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim, Y. H., Jeon, J., Hong, S. H., Rhim, W. K., Lee, Y. S., Youn, H., Chung, J. K., Lee, M. C., Lee, D. S., Kang, K. W., et al. (2011). Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small (Weinheim An Der Bergstrasse, Germany), 7(14), 2052–2060

    Article  CAS  Google Scholar 

  35. Chen, M., Guo, Z., Chen, Q., Wei, J., Li, J., Shi, C. … Zheng, N. (2018). Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy. Chemical Science, 9(18), 4268–4274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Walsh, A. A. (2017). Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine. Journal Of Nanoparticle Research, 19(4), 152

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shaffer, T. M., Wall, M. A., Harmsen, S., Longo, V. A., Drain, C. M., Kircher, M. F., & Grimm, J. (2015). Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Letters, 15(2), 864–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chen, F., Ma, K., Zhang, L., Madajewski, B., Zanzonico, P., Sequeira, S. … Bradbury, M. S. (2017). Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. Chemistry Of Materials, 29(19), 8269–8281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen, F., Goel, S., Valdovinos, H. F., Luo, H., Hernandez, R., Barnhart, T. E., & Cai, W. (2015). In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles. Acs Nano, 9(8), 7950–7959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ognjanovic, M., Radovic, M., Mirkovic, M., Prijovic, Z., Puerto Morales, M. D., Ceh, M. … Antic, B. (2019). (99m)Tc-, (90)Y-, and (177)Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. Acs Applied Materials & Interfaces, 11(44), 41109–41117

    Article  CAS  Google Scholar 

  41. Piotrowska, A., Męczyńska-Wielgosz, S., Majkowska-Pilip, A., Koźmiński, P., Wójciuk, G., Cędrowska, E. … Bilewicz, A. (2017). Nanozeolite bioconjugates labeled with (223)Ra for targeted alpha therapy. Nuclear Medicine And Biology, 47, 10–18

    Article  PubMed  CAS  Google Scholar 

  42. Czerwińska, M., Fracasso, G., Pruszyński, M., Bilewicz, A., Kruszewski, M., Majkowska-Pilip, A., & Lankoff, A. (2020). : Design and Evaluation of (223)Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. Materials (Basel) 13(17)

  43. Zhou, M., Zhang, R., Huang, M., Lu, W., Song, S., Melancon, M. P. … Li, C. (2010). A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. Journal Of The American Chemical Society, 132(43), 15351–15358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhou, M., Chen, Y., Adachi, M., Wen, X., Erwin, B., Mawlawi, O. … Li, C. (2015). Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials, 57, 41–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sun, X., Huang, X., Guo, J., Zhu, W., Ding, Y., Niu, G., Wang, A., Kiesewetter, D. O., Wang, Z. L., Sun, S., et al. (2014). Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. Journal Of The American Chemical Society, 136(5), 1706–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Guo, W., Sun, X., Jacobson, O., Yan, X., Min, K., Srivatsan, A. … Chen, X. (2015). Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. Acs Nano, 9(1), 488–495

    Article  PubMed  CAS  Google Scholar 

  47. Guryev, E. L., Volodina, N. O., Shilyagina, N. Y., Gudkov, S. V., Balalaeva, I. V., Volovetskiy, A. B., Lyubeshkin, A. V., Sen, A. V., Ermilov, S. A., Vodeneev, V. A., et al. (2018). Radioactive ((90)Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc Natl Acad Sci U S A, 115(39), 9690–9695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Satterlee, A. B., Yuan, H., & Huang, L. (2015). A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. Journal Of Controlled Release : Official Journal Of The Controlled Release Society, 217, 170–182

    Article  CAS  Google Scholar 

  49. Satterlee, A. B., Rojas, J. D., Dayton, P. A., & Huang, L. (2017). Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy. Theranostics, 7(2), 253–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chanda, N., Kan, P., Watkinson, L. D., Shukla, R., Zambre, A., Carmack, T. L., Engelbrecht, H., Lever, J. R., Katti, K., Fent, G. M., et al. (2010). Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine: The Official Journal Of The American Academy Of Nanomedicine, 6(2), 201–209

    Article  CAS  Google Scholar 

  51. Shukla, R., Chanda, N., Zambre, A., Upendran, A., Katti, K., Kulkarni, R. R., Nune, S. K., Casteel, S. W., Smith, C. J., Vimal, J., et al. (2012). Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A, 109(31), 12426–12431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gawęda, W., Pruszyński, M., Cędrowska, E., Rodak, M., Majkowska-Pilip, A., Gaweł, D. … Bilewicz, A. (2020). : Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy. Nanomaterials (Basel) 10(10)

  53. McLaughlin, M. F., Robertson, D., Pevsner, P. H., Wall, J. S., Mirzadeh, S., & Kennel, S. J. (2014). LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biotherapy & Radiopharmaceuticals, 29(1), 34–41

    Article  CAS  Google Scholar 

  54. Cędrowska, E., Pruszyński, M., Gawęda, W., Żuk, M., Krysiński, P., Bruchertseifer, F. … Bilewicz, A. (2020). : Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with (225)Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 25(5)

  55. Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schaffler, M., Tian, F. … Kreyling, W. G. (2014). Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Particle And Fibre Toxicology, 11, 33

    Article  PubMed  PubMed Central  Google Scholar 

  56. Di Pasqua, A. J., Yuan, H., Chung, Y., Kim, J. K., Huckle, J. E., Li, C. … Lu, X. (2013). Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. Journal Of Nuclear Medicine, 54(1), 111–116

    Article  PubMed  Google Scholar 

  57. Petriev, V. M., Tischenko, V. K., Mikhailovskaya, A. A., Popov, A. A., Tselikov, G., Zelepukin, I., Deyev, S. M., Kaprin, A. D., Ivanov, S., Timoshenko, V. Y., et al. (2019). Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of (188)Re radionuclide for cancer therapy. Scientific Reports, 9(1), 2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pai-Scherf, L. H., Carrasquillo, J. A., Paik, C., Gansow, O., Whatley, M., Pearson, D., Webber, K., Hamilton, M., Allegra, C., Brechbiel, M., et al. (2000). : Imaging and Phase I Study of < sup > 111</sup > In-and < sup > 90</sup > Y-labeled Anti-Lewis < sup > Y</sup > Monoclonal Antibody B3. Clinical Cancer Research 6(5):1720–1730

  59. Johari Daha, F., Shafiei, S., Sheibani, S., Tavakoli, Y. H., Mazidi, M., Mirfalah, M. H., & Babaei, M. H. (2010). Production of 177Lu and formulation of Ethylene diamine tetramethylene phosphonate (EDTMP) kits as a bone-seeking radiopharmaceutical. International Journal of Radiation Research, 7(4), 229–234

    Google Scholar 

  60. Yook, S., Lu, Y., Jeong, J. J., Cai, Z., Tong, L., Alwarda, R. … Reilly, R. M. (2016). Stability and Biodistribution of Thiol-Functionalized and (177)Lu-Labeled Metal Chelating Polymers Bound to Gold Nanoparticles. Biomacromolecules, 17(4), 1292–1302

    Article  PubMed  CAS  Google Scholar 

  61. Subramanian, S., Pandey, U., Gugulothu, D., Patravale, V., & Samuel, G. (2013). Modification of PLGA nanoparticles for improved properties as a 99mTc-labeled agent in sentinel lymph node detection. Cancer Biotherapy & Radiopharmaceuticals, 28(8), 598–606

    Article  CAS  Google Scholar 

  62. 89Zr-Nanocolloidal Albumin–Based PET/CT Lymphoscintigraphy for Sentinel Node Detection in Head and Neck Cancer: Preclinical Results. Journal of Nuclear Medicine 2011, 52(10):1580

  63. Harrington, K. J., Rowlinson-Busza, G., Syrigos, K. N., Uster, P. S., Abra, R. M., & Stewart, J. S. W. (2000). Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies. British Journal of Cancer, 83(2), 232–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Harrington, K. J., Mohammadtaghi, S., Uster, P. S., Glass, D., Peters, A. M., Vile, R. G., & Stewart, J. S. (2001). Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research, 7(2), 243–254

    PubMed  CAS  Google Scholar 

  65. Hajiramezanali, M., Atyabi, F., Mosayebnia, M., Akhlaghi, M., Geramifar, P., Jalilian, A. R. … Beiki, D. (2019). (68)Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: preparation, characterization and biological evaluation. Int J Nanomedicine, 14, 2591–2605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee, D. E., Na, J. H., Lee, S., Kang, C. M., Kim, H. N., Han, S. J., Kim, H., Choe, Y. S., Jung, K. H., Lee, K. C., et al. (2013). Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for MicroPET imaging. Molecular Pharmaceutics, 10(6), 2190–2198

    Article  PubMed  CAS  Google Scholar 

  67. Lee, S., Kang, S. W., Ryu, J. H., Na, J. H., Lee, D. E., Han, S. J., Kang, C. M., Choe, Y. S., Lee, K. C., Leary, J. F., et al. (2014). Tumor-Homing Glycol Chitosan-Based Optical/PET Dual Imaging Nanoprobe for Cancer Diagnosis. Bioconjugate Chemistry, 25(3), 601–610

    Article  PubMed  CAS  Google Scholar 

  68. Akhlaghi, M., & Pourjavadi, A. (2011). Preparation and primary evaluation of 66Ga-DTPA-chitosan in fibrosarcoma bearing mice. Nukleonika, 56(1), 41–47

    CAS  Google Scholar 

  69. Mollarazi, E., Jalilian, A. R., Johari-Daha, F., & Atyabi, F. (2015). Development of (153) Sm-folate-polyethyleneimine-conjugated chitosan nanoparticles for targeted therapy. J Labelled Comp Radiopharm, 58(8), 327–335

    Article  PubMed  CAS  Google Scholar 

  70. Bao, A., Goins, B., Klipper, R., Negrete, G., & Phillips, W. T. (2003). 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. Journal Of Nuclear Medicine, 44(12), 1992–1999

    PubMed  CAS  Google Scholar 

  71. Lin, L. T., Chang, C. H., Yu, H. L., Liu, R. S., Wang, H. E., Chiu, S. J. … Lee, Y. J. (2014). Evaluation of the therapeutic and diagnostic effects of PEGylated liposome-embedded 188Re on human non-small cell lung cancer using an orthotopic small-animal model. Journal Of Nuclear Medicine, 55(11), 1864–1870

    Article  PubMed  CAS  Google Scholar 

  72. Sofou, S., Kappel, B. J., Jaggi, J. S., McDevitt, M. R., Scheinberg, D. A., & Sgouros, G. (2007). Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers. Bioconjugate Chemistry, 18(6), 2061–2067

    Article  PubMed  CAS  Google Scholar 

  73. Anti–Prostate-Specific Membrane Antigen Liposomes Loaded with 225Ac for Potential Targeted Antivascular α-Particle Therapy of Cancer. Journal of Nuclear Medicine 2014, 55(1):107

  74. Arora, G., Shukla, J., Ghosh, S., Maulik, S. K., Malhotra, A., & Bandopadhyaya, G. (2012). PLGA Nanoparticles for Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: A Novel Approach towards Reduction of Renal Radiation Dose. PLOS ONE, 7(3), e34019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gibbens-Bandala, B., Morales-Avila, E., Ferro-Flores, G., Santos-Cuevas, C., Meléndez-Alafort, L., Trujillo-Nolasco, M., & Ocampo-García, B. (2019). 177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Materials Science and Engineering: C, 105, 110043

    Article  CAS  Google Scholar 

  76. Soares, D. C., de Oliveira, M. C., dos Santos, R. G., Andrade, M. S., Vilela, J. M., Cardoso, V. N., & Ramaldes, G. A. (2011). Liposomes radiolabeled with 159Gd-DTPA-BMA: preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. European Journal Of Pharmaceutical Sciences, 42(5), 462–469

    Article  PubMed  CAS  Google Scholar 

  77. Marik, J., Tartis, M. S., Zhang, H., Fung, J. Y., Kheirolomoom, A., Sutcliffe, J. L., & Ferrara, K. W. (2007). : Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl Med Biol 34(2):165–171

  78. Sirianni, R. W., Zheng, M. Q., Patel, T. R., Shafbauer, T., Zhou, J., Saltzman, W. M. … Huang, Y. (2014). Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography. Bioconjugate Chemistry, 25(12), 2157–2165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Liao, A. H., Wu, S. Y., Wang, H. E., Weng, C. H., Wu, M. F., & Li, P. C. (2013). Evaluation of 18F-labeled targeted perfluorocarbon-filled albumin microbubbles as a probe for microUS and microPET in tumor-bearing mice. Ultrasonics, 53(2), 320–327

    Article  PubMed  CAS  Google Scholar 

  80. Tian, L., Chen, Q., Yi, X., Wang, G., Chen, J., Ning, P. … Liu, Z. (2017). Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer. Theranostics, 7(3), 614–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liu, K., Zheng, D., Zhao, J., Tao, Y., Wang, Y., He, J. … Xi, X. (2018). pH-Sensitive nanogels based on the electrostatic self-assembly of radionuclide 131I labeled albumin and carboxymethyl cellulose for synergistic combined chemo-radioisotope therapy of cancer. Journal of Materials Chemistry B, 6(29), 4738–4746

    Article  PubMed  CAS  Google Scholar 

  82. Wang, H., & Sheng, W. (2017). (131)I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma. Nanoscale Research Letters, 12(1), 365

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liang, C., Chao, Y., Yi, X., Xu, J., Feng, L., Zhao, Q. … Liu, Z. (2019). Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials, 197, 368–379

    Article  PubMed  CAS  Google Scholar 

  84. Hansen, A. E., Fliedner, F. P., Henriksen, J. R., Jørgensen, J. T., Clemmensen, A. E., Børresen, B. … Andresen, T. L. (2018). Liposome accumulation in irradiated tumors display important tumor and dose dependent differences. Nanomedicine: Nanotechnology Biology and Medicine, 14(1), 27–34

    Article  CAS  Google Scholar 

  85. Akman, L., Biber Muftuler, F. Z., Bilgi, A., Yurt Kilcar, A., Gokulu, S. G., Medine, E. I., & Terek, M. C. (2016). Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells. Journal of Radioanalytical and Nuclear Chemistry, 308(2), 659–670

    Article  CAS  Google Scholar 

  86. Yildiz, G., Yurt Kilcar, A., Medine, E. I., Tekin, V., Kozgus Guldu, O., & Biber Muftuler, F. Z. (2017). PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays. Journal of Radioanalytical and Nuclear Chemistry, 311(2), 1043–1052

    Article  CAS  Google Scholar 

  87. Engudar, G., Schaarup-Jensen, H., Fliedner, F. P., Hansen, A. E., Kempen, P., Jølck, R. I., Kjæer, A., Andresen, T. L., Clausen, M. H., Jensen, A. I., et al. (2018). Remote loading of liposomes with a (124)I-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model. Theranostics, 8(21), 5828–5841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mondal, N., Halder, K. K., Kamila, M. M., Debnath, M. C., Pal, T. K., Ghosal, S. K. … Ganguly, S. (2010). Preparation, characterization, and biodistribution of letrozole loaded PLGA nanoparticles in Ehrlich Ascites tumor bearing mice. International Journal Of Pharmaceutics, 397(1–2), 194–200

    Article  PubMed  CAS  Google Scholar 

  89. Ekinci, M., Ilem-Ozdemir, D., Gundogdu, E., & Asikoglu, M. (2015). Methotrexate loaded chitosan nanoparticles: Preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. Journal of Drug Delivery Science and Technology, 30, 107–113

    Article  CAS  Google Scholar 

  90. Hawary, D. L., Motaleb, M. A., Farag, H., Guirguis, O. W., & Elsabee, M. Z. (2011). Water-soluble derivatives of chitosan as a target delivery system of 99mTc to some organs in vivo for nuclear imaging and biodistribution. Journal of Radioanalytical and Nuclear Chemistry, 290(3), 557–567

    Article  CAS  Google Scholar 

  91. Polyák, A., Hajdu, I., Bodnár, M., Trencsényi, G., Pöstényi, Z., Haász, V. … Borbély, J. (2013). (99m)Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. International Journal Of Pharmaceutics, 449(1–2), 10–17

    Article  PubMed  Google Scholar 

  92. Karpuz, M., Silindir-Gunay, M., Kursunel, M. A., Esendagli, G., Dogan, A., & Ozer, A. Y. (2020). Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. Journal of Drug Delivery Science and Technology, 57, 101707

    Article  CAS  Google Scholar 

  93. Therapeutic Efficacy Evaluation of 111In-Labeled PEGylated Liposomal Vinorelbine in Murine Colon Carcinoma with Multimodalities of Molecular Imaging. Journal of Nuclear Medicine 2009, 50(12):2073

  94. Liu, S. Y., Lo, S. N., Lee, W. C., Hsu, W. C., Lee, T. W., & Chang, C. H. (2021). : Evaluation of Nanotargeted (111)In-Cyclic RGDfK-Liposome in a Human Melanoma Xenotransplantation Model. Int J Mol Sci 22(3)

  95. Marques, F., Gano, L., Batista, M. K. S., Gomes, C. A. R., Gomes, P., & Santos, I. (2009). Radiochemical and biological evaluation of novel 153Sm/166Ho-amino acid–chitosan complexes. Journal of Labelled Compounds and Radiopharmaceuticals, 52(3), 79–83

    Article  CAS  Google Scholar 

  96. Lohar, S., Jadhav, S., Chakravarty, R., Chakraborty, S., Sarma, H. D., & Dash, A. (2020). A kit based methodology for convenient formulation of (166)Ho-Chitosan complex for treatment of liver cancer. Applied Radiation And Isotopes, 161, 109161

    Article  PubMed  CAS  Google Scholar 

  97. Hamoudeh, M., Kamleh, M. A., Diab, R., & Fessi, H. (2008). Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Advanced Drug Delivery Reviews, 60(12), 1329–1346

    Article  PubMed  CAS  Google Scholar 

  98. Zhang, L., Chen, H., Wang, L., Liu, T., Yeh, J., Lu, G. … Mao, H. (2010). Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl, 3, 159–170

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. Journal Of Controlled Release : Official Journal Of The Controlled Release Society, 166(2), 182–194

    Article  CAS  Google Scholar 

  100. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B., & McNeil, S. E. (2008). Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Molecular Pharmaceutics, 5(4), 487–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jeon, J. (2019). : Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 20(9)

  102. Leroi, N., Lallemand, F., Coucke, P., Noel, A., & Martinive, P. (2016). : Impacts of Ionizing Radiation on the Different Compartments of the Tumor Microenvironment. Frontiers in Pharmacology 7(78)

  103. Balasubramanian, S. K., Jittiwat, J., Manikandan, J., Ong, C. N., Yu, L. E., & Ong, W. Y. (2010). Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 31(8), 2034–2042

    Article  PubMed  CAS  Google Scholar 

  104. Khan, H. A., Abdelhalim, M. A. K., Alhomida, A. S., & Al-Ayed, M. S. (2013). Effects of Naked Gold Nanoparticles on Proinflammatory Cytokines mRNA Expression in Rat Liver and Kidney. BioMed Research International, 2013, 590730

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen, H., Dorrigan, A., Saad, S., Hare, D. J., Cortie, M. B., & Valenzuela, S. M. (2013). In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One, 8(2), e58208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Grant, R. W., & Stephens, J. M. (2015). Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. American Journal Of Physiology. Endocrinology And Metabolism, 309(3), E205–213

    Article  PubMed  CAS  Google Scholar 

  107. Kosteli, A., Sugaru, E., Haemmerle, G., Martin, J. F., Lei, J., Zechner, R., & Ferrante, A. W. Jr. (2010). Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. The Journal of Clinical Investigation, 120(10), 3466–3479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schäffler, A., & Schölmerich, J. (2010). Innate immunity and adipose tissue biology. Trends In Immunology, 31(6), 228–235

    Article  PubMed  Google Scholar 

  109. Almeida, J. P., Lin, A. Y., Langsner, R. J., Eckels, P., Foster, A. E., & Drezek, R. A. (2014). In vivo immune cell distribution of gold nanoparticles in naïve and tumor bearing mice. Small (Weinheim An Der Bergstrasse, Germany), 10(4), 812–819

    Article  CAS  Google Scholar 

  110. Tomić, S., Ðokić, J., Vasilijić, S., Ogrinc, N., Rudolf, R., Pelicon, P., Vučević, D., Milosavljević, P., Janković, S., Anžel, I., et al. (2014). Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One, 9(5), e96584

    Article  PubMed  PubMed Central  Google Scholar 

  111. Laskar, A., Ghosh, M., Khattak, S. I., Li, W., & Yuan, X. M. (2012). Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond), 7(5), 705–717

    Article  CAS  Google Scholar 

  112. Rojas, J. M., Sanz-Ortega, L., Mulens-Arias, V., Gutiérrez, L., Pérez-Yagüe, S., & Barber, D. F. (2016). Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine: The Official Journal Of The American Academy Of Nanomedicine, 12(4), 1127–1138

    Article  CAS  Google Scholar 

  113. Park, E. J., Kim, H., Kim, Y., Yi, J., Choi, K., & Park, K. (2010). Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology, 275(1–3), 65–71

    Article  PubMed  CAS  Google Scholar 

  114. Ban, M., Langonné, I., Huguet, N., Guichard, Y., & Goutet, M. (2013). Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicology Letters, 216(1), 31–39

    Article  PubMed  CAS  Google Scholar 

  115. Park, E. J., Oh, S. Y., Lee, S. J., Lee, K., Kim, Y., Lee, B. S., & Kim, J. S. (2015). Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environmental Research, 143, 138–147

    Article  PubMed  CAS  Google Scholar 

  116. Shah, A., & Dobrovolskaia, M. A. (2018). Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine: nanotechnology biology and medicine, 14(3), 977–990

    Article  CAS  Google Scholar 

  117. Gaharwar, U. S., Kumar, S., & Rajamani, P. (2020). Iron oxide nanoparticle-induced hematopoietic and immunological response in rats. RSC Advances, 10(59), 35753–35764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Parks, C. G., Conrad, K., & Cooper, G. S. (1999). Occupational exposure to crystalline silica and autoimmune disease. Environmental Health Perspectives, 107(Suppl 5(Suppl 5), 793–802

    PubMed  PubMed Central  Google Scholar 

  119. Barbarin, V., Xing, Z., Delos, M., Lison, D., & Huaux, F. (2005). Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. American Journal Of Physiology. Lung Cellular And Molecular Physiology, 288(5), L841–848

    Article  PubMed  CAS  Google Scholar 

  120. Oh, W. K., Kim, S., Choi, M., Kim, C., Jeong, Y. S., Cho, B. R. … Jang, J. (2010). Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica – Titania Hollow Nanoparticles Based on Size and Surface Functionality. Acs Nano, 4(9), 5301–5313

    Article  PubMed  CAS  Google Scholar 

  121. Lee, S., Kim, M. S., Lee, D., Kwon, T. K., Khang, D., Yun, H. S., & Kim, S. H. (2013). The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice. Int J Nanomedicine, 8, 147–158

    PubMed  PubMed Central  Google Scholar 

  122. Heidegger, S., Gössl, D., Schmidt, A., Niedermayer, S., Argyo, C., Endres, S. … Bourquin, C. (2016). Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 8(2), 938–948

    Article  PubMed  CAS  Google Scholar 

  123. Hoppstädter, J., Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., & Kiemer, A. K. (2015). : M2 polarization enhances silica nanoparticle uptake by macrophages. Frontiers in Pharmacology 6(55)

  124. Gómez, D. M., Urcuqui-Inchima, S., & Hernandez, J. C. (2017). Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells. Innate Immun, 23(8), 697–708

    Article  PubMed  Google Scholar 

  125. Abbaraju, P. L., Jambhrunkar, M., Yang, Y., Liu, Y., Lu, Y., & Yu, C. (2018). Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chemical Communications, 54(16), 2020–2023

    Article  PubMed  CAS  Google Scholar 

  126. Kim, J., Li, W. A., Choi, Y., Lewin, S. A., Verbeke, C. S., Dranoff, G., & Mooney, D. J. (2015). Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nature Biotechnology, 33(1), 64–72

    Article  PubMed  CAS  Google Scholar 

  127. Nguyen, T. L., Choi, Y., & Kim, J. (2019). Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. Advanced Materials, 31(34), 1803953

    Article  Google Scholar 

  128. Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioeng Transl Med, 4(3), e10143–e10143

    Article  PubMed  PubMed Central  Google Scholar 

  129. van Rooijen, N., & van Nieuwmegen, R. (1977). Liposomes in immunology: the immune response against antigen-containing liposomes. Immunol Commun, 6(5), 489–498

    Article  PubMed  Google Scholar 

  130. Nakanishi, T., Kunisawa, J., Hayashi, A., Tsutsumi, Y., Kubo, K., Nakagawa, S. … Mayumi, T. (1997). Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochemical And Biophysical Research Communications, 240(3), 793–797

    Article  PubMed  CAS  Google Scholar 

  131. Yan, W., Chen, W., & Huang, L. (2007). Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines. Molecular Immunology, 44(15), 3672–3681

    Article  PubMed  CAS  Google Scholar 

  132. Zhuang, Y., Ma, Y., Wang, C., Hai, L., Yan, C., Zhang, Y. … Cai, L. (2012). PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. Journal of Controlled Release, 159(1), 135–142

    Article  PubMed  CAS  Google Scholar 

  133. Kaur, R., Bramwell, V. W., Kirby, D. J., & Perrie, Y. (2012). Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response. Journal of Controlled Release, 164(3), 331–337

    Article  PubMed  CAS  Google Scholar 

  134. Shen, K. Y., Liu, H. Y., Li, H. J., Wu, C. C., Liou, G. G., Chang, Y. C. … Liu, S. J. (2016). A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. Journal of Controlled Release, 233, 57–63

    Article  PubMed  CAS  Google Scholar 

  135. Jiang, P. L., Lin, H. J., Wang, H. W., Tsai, W. Y., Lin, S. F., Chien, M. Y. … Liu, D. Z. (2015). Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomaterialia, 11, 356–367

    Article  PubMed  CAS  Google Scholar 

  136. Yoshizaki, Y., Yuba, E., Sakaguchi, N., Koiwai, K., Harada, A., & Kono, K. (2017). pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA. Biomaterials, 141, 272–283

    Article  PubMed  CAS  Google Scholar 

  137. Landesman-Milo, D., & Peer, D. (2012). Altering the immune response with lipid-based nanoparticles. Journal of Controlled Release, 161(2), 600–608

    Article  PubMed  CAS  Google Scholar 

  138. Zahednezhad, F., Saadat, M., Valizadeh, H., Zakeri-Milani, P., & Baradaran, B. (2019). Liposome and immune system interplay: Challenges and potentials. Journal of Controlled Release, 305, 194–209

    Article  PubMed  CAS  Google Scholar 

  139. Sabnani, M. K., Rajan, R., Rowland, B., Mavinkurve, V., Wood, L. M., Gabizon, A. A., & La-Beck, N. M. (2015). Liposome promotion of tumor growth is associated with angiogenesis and inhibition of antitumor immune responses. Nanomedicine: Nanotechnology Biology and Medicine, 11(2), 259–262

    Article  CAS  Google Scholar 

  140. Rajan, R., Sabnani, M. K., Mavinkurve, V., Shmeeda, H., Mansouri, H., Bonkoungou, S. … La-Beck, N. M. (2018). Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. Journal of Controlled Release, 271, 139–148

    Article  PubMed  CAS  Google Scholar 

  141. La-Beck, N. M., Liu, X., & Wood, L. M. (2019). : Harnessing Liposome Interactions With the Immune System for the Next Breakthrough in Cancer Drug Delivery. Frontiers in Pharmacology 10(220)

  142. Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlom, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25(11), 2085–2094

    Article  PubMed  CAS  Google Scholar 

  143. Shi, G. N., Zhang, C. N., Xu, R., Niu, J. F., Song, H. J., Zhang, X. Y., Wang, W. W., Wang, Y. M., Li, C., Wei, X. Q., et al. (2017). Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials, 113, 191–202

    Article  PubMed  CAS  Google Scholar 

  144. Pei, M., Liang, J., Zhang, C., Wang, X., Zhang, C., Ma, G., & Sun, H. (2019). Chitosan/calcium phosphates nanosheet as a vaccine carrier for effective cross-presentation of exogenous antigens. Carbohydrate Polymers, 224, 115172

    Article  PubMed  CAS  Google Scholar 

  145. Castro, F., Pinto, M. L., Silva, A. M., Pereira, C. L., Teixeira, G. Q., Gomez-Lazaro, M. … Oliveira, M. J. (2017). Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomaterialia, 63, 96–109

    Article  PubMed  CAS  Google Scholar 

  146. Castro, F., Pinto, M. L., Pereira, C. L., Serre, K., Barbosa, M. A., Vermaelen, K. … Oliveira, M. J. (2020). Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 257, 120218

    Article  PubMed  CAS  Google Scholar 

  147. Li, X., Dong, W., Nalin, A. P., Wang, Y., Pan, P., Xu, B., Zhang, Y., Tun, S., Zhang, J., Wang, L. S., et al. (2018). The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 7(6), e1431085

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gleeson, M. W., & Dickson, R. C. (2015). Albumin gains immune boosting credibility. Clin Transl Gastroenterol, 6(4), e86–e86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Garcia-Martinez, R., Andreola, F., Mehta, G., Poulton, K., Oria, M., Jover, M., Soeda, J., Macnaughtan, J., De Chiara, F., Habtesion, A., et al. (2015). Immunomodulatory and antioxidant function of albumin stabilises the endothelium and improves survival in a rodent model of chronic liver failure. Journal Of Hepatology, 62(4), 799–806

    Article  PubMed  CAS  Google Scholar 

  150. China, L., Maini, A., Skene, S. S., Shabir, Z., Sylvestre, Y., Colas, R. A., Ly, L., Becares Salles, N., Belloti, V., Dalli, J., et al. (2018). Albumin Counteracts Immune-Suppressive Effects of Lipid Mediators in Patients With Advanced Liver Disease. Clinical Gastroenterology and Hepatology, 16(5), 738–747e737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Sleep, D. (2015). Albumin and its application in drug delivery. Expert Opinion On Drug Delivery, 12(5), 793–812

    Article  PubMed  CAS  Google Scholar 

  152. Hoogenboezem, E. N., & Duvall, C. L. (2018). Harnessing albumin as a carrier for cancer therapies. Advanced Drug Delivery Reviews, 130, 73–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lamichhane, S., & Lee, S. (2020). Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Archives of Pharmacal Research, 43(1), 118–133

    Article  PubMed  Google Scholar 

  154. Zhu, G., Lynn, G. M., Jacobson, O., Chen, K., Liu, Y., Zhang, H., Ma, Y., Zhang, F., Tian, R., Ni, Q., et al. (2017). Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nature Communications, 8(1), 1954

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ai, S. L., He, X. Y., Liu, B. Y., Zhuo, R. X., & Cheng, S. X. (2019). Targeting Delivery of Oligodeoxynucleotides to Macrophages by Mannosylated Cationic Albumin for Immune Stimulation in Cancer Treatment. Molecular Pharmaceutics, 16(6), 2616–2625

    Article  PubMed  CAS  Google Scholar 

  156. Hamdy, S., Haddadi, A., Shayeganpour, A., Samuel, J., & Lavasanifar, A. (2011). Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharmaceutical Research, 28(9), 2288–2301

    Article  PubMed  CAS  Google Scholar 

  157. Oyewumi, M. O., Kumar, A., & Cui, Z. (2010). Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Review Of Vaccines, 9(9), 1095–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Silva, A. L., Soema, P. C., Slütter, B., Ossendorp, F., & Jiskoot, W. (2016). PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Human Vaccines & Immunotherapeutics, 12(4), 1056–1069

    Article  CAS  Google Scholar 

  159. Zhou, H., Ivanov, V. N., Gillespie, J., Geard, C. R., Amundson, S. A., Brenner, D. J. … Hei, T. K. (2005). : Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 102(41):14641

  160. Najafi, M., Fardid, R., Hadadi, G., & Fardid, M. (2014). The mechanisms of radiation-induced bystander effect. J Biomed Phys Eng, 4(4), 163–172

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Yahyapour, R., Salajegheh, A., Safari, A., Amini, P., Rezaeyan, A., Amraee, A., & Najafi, M. (2018). Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng, 8(4), 435–446

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Gandhi, S., & Chandna, S. (2017). Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer and Metastasis Reviews, 36(2), 375–393

    Article  PubMed  CAS  Google Scholar 

  163. Barker, H. E., Paget, J. T. E., Khan, A. A., & Harrington, K. J. (2015). The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews Cancer, 15(7), 409–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Chabanon, R. M., Pedrero, M., Lefebvre, C., Marabelle, A., Soria, J. C., & Postel-Vinay, S. (2016). Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clinical Cancer Research, 22(17), 4309

    Article  PubMed  CAS  Google Scholar 

  165. Duan, Q., Zhang, H., Zheng, J., & Zhang, L. (2020). Turning Cold into Hot: Firing up the Tumor Microenvironment. Trends in Cancer, 6(7), 605–618

    Article  PubMed  CAS  Google Scholar 

  166. Demaria, S., Coleman, C. N., & Formenti, S. C. (2016). Radiotherapy: Changing the Game in Immunotherapy. Trends in cancer, 2(6), 286–294

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mole, R. H. (1953). Whole Body Irradiation—Radiobiology or Medicine? The British Journal of Radiology, 26(305), 234–241

    Article  PubMed  CAS  Google Scholar 

  168. Hagemann, T., Balkwill, F., & Lawrence, T. (2007). Inflammation and Cancer: A Double-Edged Sword. Cancer Cell, 12(4), 300–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kroemer, G., Galluzzi, L., Kepp, O., & Zitvogel, L. (2013). Immunogenic cell death in cancer therapy. Annual Review Of Immunology, 31, 51–72

    Article  PubMed  CAS  Google Scholar 

  170. Reits, E. A., Hodge, J. W., Herberts, C. A., Groothuis, T. A., Chakraborty, M., Wansley, E. K., Camphausen, K., Luiten, R. M., de Ru, A. H., Neijssen, J., et al. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. Journal Of Experimental Medicine, 203(5), 1259–1271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Chakraborty, M., Abrams, S. I., Camphausen, K., Liu, K., Scott, T., Coleman, C. N., & Hodge, J. W. (2003). Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. The Journal Of Immunology, 170(12), 6338–6347

    Article  PubMed  CAS  Google Scholar 

  172. Jarosz-Biej, M., Smolarczyk, R., Cichoń, T., & Kułach, N. (2019). : Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. International Journal of Molecular Sciences 20(13)

  173. Weichselbaum, R. R., Liang, H., Deng, L., & Fu, Y. X. (2017). Radiotherapy and immunotherapy: a beneficial liaison? Nature Reviews. Clinical Oncology, 14(6), 365–379

    Article  PubMed  CAS  Google Scholar 

  174. Zhao, X., & Shao, C. (2020). : Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers 12(10)

  175. Ngwa, W., Irabor, O. C., Schoenfeld, J. D., Hesser, J., Demaria, S., & Formenti, S. C. (2018). Using immunotherapy to boost the abscopal effect. Nature Reviews Cancer, 18(5), 313–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Azad, A., Yin Lim, S., D’Costa, Z., Jones, K., Diana, A., Sansom, O. J., Kruger, P., Liu, S., McKenna, W. G., Dushek, O., et al. (2017). PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. Embo Molecular Medicine, 9(2), 167–180

    Article  PubMed  CAS  Google Scholar 

  177. Pfannenstiel, L. W., McNeilly, C., Xiang, C., Kang, K., Diaz-Montero, C. M., Yu, J. S., & Gastman, B. R. (2019). Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. OncoImmunology, 8(1), e1507669

    Article  PubMed  Google Scholar 

  178. Helm, A., Tinganelli, W., Simoniello, P., Kurosawa, F., Fournier, C., Shimokawa, T., & Durante, M. : Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. International Journal of Radiation Oncology, Biology, Physics

  179. Chen, D., Yang, D., Dougherty, C. A., Lu, W., Wu, H., He, X. … Hong, H. (2017). In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. Acs Nano, 11, 4315–4327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Zhang, J., Niu, G., Lang, L., Li, F., Fan, X., Yan, X., Yao, S., Yan, W., Huo, L., Chen, L., et al. (2017). Clinical Translation of a Dual Integrin αvβ3-and Gastrin-Releasing Peptide Receptor-Targeting PET Radiotracer, 68Ga-BBN-RGD. Journal Of Nuclear Medicine, 58, 228–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Liu, Z., Huang, J., Dong, C., Cui, L., Jin, X., Jia, B. … Wang, F. (2012). 99mTc-Labeled RGD-BBN Peptide for Small-Animal SPECT/CT of Lung Carcinoma. Mol Pharmaceutics, 9, 1409–1417

    Article  CAS  Google Scholar 

  182. He, S., Song, J., Qu, J., & Cheng, Z. (2018). Crucial Breakthrough of Second Near-Infrared Biological Window Fluorophores: Design and Synthesis Toward Multimodal Imaging and Theranostics. Chemical Society Reviews, 47, 4258–4278

    Article  PubMed  CAS  Google Scholar 

  183. Liu, S., Ou, H., Li, Y., Zhang, H., Liu, J., Lu, X. … Tang, B. Z. (2020). Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal Of The American Chemical Society, 142, 15146–15156

    Article  PubMed  CAS  Google Scholar 

  184. Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., Zhao, X., Li, J., Du, H., Zhang, M., et al. (2019). Vivo Molecular Imaging for Immunotherapy using Ultra-Bright Near-Infrared-IIb Rare-Earth Nanoparticles. Nature Biotechnology, 37, 1322–1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wan, H., Du, H., & Dai, F. W. (2019). Molecular Imaging in the Second Near-Infrared Window. Advanced Functional Materials, 29, 1900566

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yin, C., Lu, X., Fan, Q., & Huang, W. (2021). Organic Semiconducting Nanomaterials-Assisted Phototheranostics in Near-Infrared-II Biological Window. VIEW, 2, 20200070

    Article  CAS  Google Scholar 

  187. Zhou, H., Zeng, X., Li, A., Zhou, W., Tang, L., Hu, W., Fan, Q., Meng, X., Deng, H., Duan, L., et al. (2020). Upconversion NIR-II Fluorophores for Mitochondria-Targeted Cancer Imaging and Photothermal Therapy. Nature Communications, 11, 6183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Cai, Y., Wei, Z., Song, C., Tang, C., Han, W., & Dong, X. (2019). Optical Nano-Agents in the Second Near-Infrared Window for Biomedical Applications. Chemical Society Reviews, 48, 22–37

    Article  PubMed  CAS  Google Scholar 

  189. Li, Y., Cai, Z., Liu, S., Zhang, H., Wong, S. T. H., Lam, J. W. Y. … Tang, B. Z. (2020). Design of AIEgens for Near-infrared IIb Imaging through Structural Modulation at Molecular and Morphological Levels. Nature Communications, 11, 1255

    Article  PubMed  PubMed Central  Google Scholar 

  190. Li, D., Liu, Q., Qi, Q., Shi, H., Hsu, E. C., Chen, W., Yuan, W., Wu, Y., Lin, S., Zeng, Y., et al. (2020). Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. Small (Weinheim An Der Bergstrasse, Germany), 16, 2003851

    Article  CAS  Google Scholar 

  191. Hu, Z., Fang, C., Li, B., Zhang, Z., Cao, C., Cai, M., Su, S., Sun, X., Shi, X., Li, C., et al. (2020). First-in-Human Liver-Tumour Surgery Guided by Multispectral Fluorescence Imaging in the Visible and Near-Infrared-I/II Windows. Nat Biomed Eng, 4, 259–271

    Article  PubMed  Google Scholar 

  192. Li, C., Chen, G., Zhang, Y., Wu, F., & Wang, Q. (2020). Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. Journal Of The American Chemical Society, 142, 14789–14804

    Article  PubMed  CAS  Google Scholar 

  193. Zhang, Q., Yu, P., Fan, Y., Sun, C., He, H., Liu, X. … Zhang, F. (2021). Bright and Stable NIR-II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angewandte Chemie Int Ed, 60, 3967–3973

    Article  CAS  Google Scholar 

  194. Lei, Z., & Zhang, F. (2020). : Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed ASAP

  195. Li, B., Zhao, M., & Zhang, F. (2020). Rational Design of Near-Infrared-II Organic Molecular Dyes for Bioimaging and Biosensing. ACS Materials Lett, 2, 905–917

    Article  CAS  Google Scholar 

  196. Chen, D., Liu, Y., Zhang, Z., Liu, Z., Fang, X., He, S., & Wu, C. (2021). NIR-II Fluorescence Imaging Reveals Bone Marrow Retention of Small Polymer Nanoparticles. Nano Letters, 21, 798–805

    Article  PubMed  CAS  Google Scholar 

  197. Zhang, Z., Fang, X., Liu, Z., Liu, H., Chen, D., He, S., Zheng, J., Yang, B., Qin, W., Zhang, X., et al. (2020). Semiconducting Polymer Dots with Dual-Enhanced NIR‐IIa Fluorescence for Through-Skull Mouse‐Brain Imaging. Angewandte Chemie Int Ed, 59, 3691–3698

    Article  CAS  Google Scholar 

  198. Liu, S., Li, Y., Kwok, R. T. K., Lam, J. W. Y., & Tang, B. Z. (2021). : Structural and Process Controls of AIEgens for NIR-II Theranostics. Chem Sci ASAP

  199. Yang, R. Q., Lou, K. L., Wang, P. Y., Gao, Y. Y., Zhang, Y. Q., Chen, M. … Zhang, G. J. (2021). : Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. Small Methods ASAP

  200. Englman, R., & Jortner, J. (1970). The Energy Gap Law for Radiationless Transitions in Large Molecules. Molecular Physics, 18, 145–164

    Article  CAS  Google Scholar 

  201. Chen, W. C., Chou, P. T., & Cheng, Y. C. (2019). Low Internal Reorganization Energy of the Metal – Metal-to-Ligand Charge Transfer Emission in Dimeric Pt(II) Complexes. Journal Of Physical Chemistry C, 123, 10225–10236

    Article  CAS  Google Scholar 

  202. Wei, Y. C., Wang, S. F., Hu, Y., Liao, L. S., Chen, D. G., Chang, K. H., Wang, C. W., Liu, S. H., Chan, W. H., Liao, J. L., et al. (2020). Overcoming the Energy Gap Law in Near-Infrared OLEDs by Exciton-Vibration Eecoupling. Nature Photonics, 14, 570–577

    Article  CAS  Google Scholar 

  203. Ly, K. T., Chen-Cheng, R. W., Lin, H. W., Shiau, Y. J., Liu, S. H., Chou, P. T. … Chi, Y. (2017). Near-Infrared Organic Light-Emitting Diodes with Very High External Quantum Efficiency and Radiance. Nature Photonics, 11, 63–68

    Article  Google Scholar 

  204. Kenry, Duan, Y., & Liu, B. (2018). Recent Advances of Optical Imaging in the Second Near-Infrared Window. Advanced Materials, 30, 1802394

    Article  Google Scholar 

  205. Ma, H., Liu, C., Hu, Z., Yu, P., Zhu, X., Ma, R., Sun, Z., Zhang, C. H., Sun, H., Zhu, S., et al. (2020). Propylenedioxy Thiophene Donor to Achieve NIR-II Molecular Fluorophores with Enhanced Brightness. Chemistry Of Materials, 32, 2061–2069

    Article  CAS  Google Scholar 

  206. Nani, R. R., Kelley, J. A., Ivanic, J., & Schnermann, M. J. (2015). Reactive Species Involved in the Regioselective Photooxidation of Heptamethine Cyanines. Chemical Science, 6, 6556–6563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Liu, M. H., Zhang, Z., Yang, Y. C., & Chan, Y. H. (2021). Polymethine-Based Semiconducting Polymer Dots with Narrow-Band Emission and Absorption/Emission Maxima at NIR-II for Bioimaging. Angewandte Chemie Int Ed, 60, 983–989

    Article  CAS  Google Scholar 

  208. Yu, J., Wu, C., Zhang, X., Ye, F., Gallina, M. E., Rong, Y. … Chiu, D. T. (2012). Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Cross-Linking and Their Application for Specific Cellular Imaging. Advanced Materials, 24, 3498–3504

    Article  PubMed  CAS  Google Scholar 

  209. Liu, H. Y., Wu, P. J., Kuo, S. Y., Chen, C. P., Chang, E. H., Wu, C. Y., & Chan, Y. H. (2015). Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. Journal Of The American Chemical Society, 137, 10420–10429

    Article  PubMed  CAS  Google Scholar 

  210. Liou, S. Y., Ke, C. S., Chen, J. H., Luo, Y. W., Kuo, S. Y., Chen, Y. H. … Chan, Y. H. (2016). Tuning the Emission of Semiconducting Polymer Dots from Green to Near-Infrared by Alternating Donor Monomers and Their Applications for in Vivo Biological Imaging. Acs Macro Letters, 5, 154–157

    Article  PubMed  CAS  Google Scholar 

  211. Ke, C. S., Fang, C. C., Yan, J. Y., Tseng, P. J., Pyle, J. R., Chen, C. P. … Chan, Y. H. (2017). Molecular Engineering and Design of Semiconducting Polymer Dots with Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging. Acs Nano, 11, 3166–3177

    Article  PubMed  CAS  Google Scholar 

  212. Tsai, W. K., & Chan, Y. H. (2019). Semiconducting Polymer Dots as Near-Infrared Fluorescent Probes for Bioimaging and Sensing. Journal Of The Chinese Chemical Society, 10, 9–20

    Article  Google Scholar 

  213. Tsai, W. K., Wang, C. I., Liao, C. H., Yao, C. N., Kuo, T. J., Liu, M. H., Hsu, C. P., Lin, S. Y., Wu, C. Y., Pyle, J. R., et al. (2019). Molecular Design of Near-Infrared Fluorescent Pdots for Tumor Targeting: Aggregation-Induced Emission versus Anti-Aggregation-Caused Quenching. Chemical Science, 10, 198–207

    Article  PubMed  CAS  Google Scholar 

  214. Gupta, N., Chan, Y. H., Saha, S., & Liu, M. H. (2021). Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. Chemistry - An Asian Journal, 16, 175–184

    Article  PubMed  CAS  Google Scholar 

  215. Wu, C., & Chiu, D. T. (2013). Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. AngewChem Int Ed, 52, 3086–3109

    Article  CAS  Google Scholar 

  216. Chan, Y. H., & Wu, P. J. (2015). Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Particle & Particle Systems Characterization, 32, 11–28

    Article  CAS  Google Scholar 

  217. Li, K., & Liu, B. (2014). Polymer-Encapsulated Organic Nanoparticles for Fluorescence and Photoacoustic Imaging. Chemical Society Reviews, 43, 6570–6597

    Article  PubMed  CAS  Google Scholar 

  218. Pu, K., Shuhendler, A. J., Jokerst, J. V., Mei, J., Gambhir, S. S., Bao, Z., & Rao, J. (2014). Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice. Nature Nanotechnology, 9, 233–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Pu, K., Chattopadhyay, N., & Rao, J. (2016). Recent Advances of Semiconducting Polymer Nanoparticles in In Vivo Molecular Imaging. Journal Of Controlled Release : Official Journal Of The Controlled Release Society, 240, 312–322

    Article  CAS  Google Scholar 

  220. Lim, X. (2016). The Nanolight Revolution is Coming. Nature, 531, 26–28

    Article  PubMed  CAS  Google Scholar 

  221. Feng, L., Zhu, C., Yuan, H., Liu, L., Lv, F., & Wang, S. (2013). Conjugated Polymer Nanoparticles: Preparation, Properties, Functionalization and Biological Applications. Chemical Society Reviews, 43, 6620–6633

    Article  Google Scholar 

  222. Miao, Q., Xie, C., Zhen, X., Lyu, Y., Duan, H., Liu, X. … Pu, K. (2017). Molecular Afterglow Imaging with Bright, Biodegradable Polymer Nanoparticles. Nature Biotechnology, 35, 1102–1110

    Article  PubMed  CAS  Google Scholar 

  223. Yu, J., Rong, Y., Kuo, C. T., Zhou, X. H., & Chiu, D. T. (2017). Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Analytical Chemistry, 89, 42–56

    Article  PubMed  CAS  Google Scholar 

  224. Peng, H. S., & Chiu, D. T. (2015). Soft Fluorescent Nanomaterials for Biological and Biomedical Imaging. Chemical Society Reviews, 44, 4699–4722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Xuan Yi, M. X., Zhou, H., Xiong, S., Qian, R., & Chai, Z. (2018). Li Zhao,* and Kai Yang: Ultrasmall Hyperbranched Semiconducting Polymer Nanoparticles with Different Radioisotopes Labeling for Cancer Theranostics. ACS Nano 12:9142 – 9151

  226. Dijkstra, K. K., Voabil, P., Schumacher, T. N., & Voest, E. E. (2016). Genomics- and Transcriptomics-Based Patient Selection for Cancer Treatment With Immune Checkpoint Inhibitors: A Review. JAMA Oncology, 2(11), 1490–1495

    Article  PubMed  Google Scholar 

  227. Keek, S. A., Leijenaar, R. T. H., Jochems, A., & Woodruff, H. C. (2018). A review on radiomics and the future of theranostics for patient selection in precision medicine. The British Journal of Radiology, 91(1091), 20170926

    Article  PubMed  PubMed Central  Google Scholar 

  228. Grassberger, C., Ellsworth, S. G., Wilks, M. Q., Keane, F. K., & Loeffler, J. S. (2019). Assessing the interactions between radiotherapy and antitumour immunity. Nature Reviews Clinical Oncology, 16(12), 729–745

    Article  PubMed  Google Scholar 

  229. Hwang, W. L., Pike, L. R. G., Royce, T. J., Mahal, B. A., & Loeffler, J. S. (2018). Safety of combining radiotherapy with immune-checkpoint inhibition. Nature Reviews Clinical Oncology, 15(8), 477–494

    Article  PubMed  Google Scholar 

  230. Lin, L. T., Chang, C. Y., Chang, C. H., Wang, H. E., Chiou, S. H., Liu, R. S. … Lee, Y. J. (2016). Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model. Oncotarget, 7(40), 65782–65796

    Article  PubMed  PubMed Central  Google Scholar 

  231. Lin, M. Y., Hsieh, H. H., Chen, J. C., Chen, C. L., Sheu, N. C., Huang, W. S. … Wu, C. Y. (2021). : Brachytherapy Approach Using (177)Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics 13(11)

Download references

Acknowledgements

Lee Y-J was supported by a grant of Ministry of Science and Technology of Taiwan (109-2314-B-010-021-MY3); Chiang H.K. was supported by a grant of Ministry of Science and Technology of Taiwan (110-2124-M-A49A-501); Chuang H-Y has received research grants from the Ministry of Science and Technology of Taiwan (MOST 109-2314-B-010 -006 -MY2) and Yen Tjing Ling Medical Foundation (grant number: CI-109-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Jang Lee Ph.D. or Hui-Yen Chuang Ph.D..

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Chan, YH., Lin, SL. et al. Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J. Med. Biol. Eng. 42, 555–578 (2022). https://doi.org/10.1007/s40846-022-00715-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00715-6

Navigation