Skip to main content
Log in

Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of current study is to synthesize a theranostic (multi-functional) agent, which is targeted on ovary, cervical and breast cancer types with diagnosis and treatment potential and to determine its bioaffinity by using in vitro methods. In conclusion; the designed compound (IPPP), which has fluorescence capability (from Indocyanine), encapsulated structure (with PEGylated PLGA), included an anticancer drug (Paclitaxel) for targeting and radionuclidic tracer (131I) content for tracing, has bioaffinity and promise for diagnosis and therapy on ovarian, cervical and breast cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davis SS (1997) Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224

    Article  CAS  Google Scholar 

  2. Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, Yong KT, Roy I (2010) Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnol 8(22):1–18

    Google Scholar 

  3. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114

    Article  CAS  Google Scholar 

  4. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–437

    Article  CAS  Google Scholar 

  5. McCarron PA, Hall M (2004) Pharmaceutical nanotechnology. Encycl Nanosci Nanotechnol 8:469–487

    CAS  Google Scholar 

  6. Li YP, Pei YY, Zhang XY, Gu ZH, Zhou ZH, Yuan WF, Zhou JJ, Zhu JH, Gao XJ (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71:203–211

    Article  CAS  Google Scholar 

  7. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  Google Scholar 

  8. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 63:155–163

    Article  CAS  Google Scholar 

  9. Mérian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17:5564–5591

    Article  Google Scholar 

  10. Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS (2012) Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33:3270–3278

    Article  CAS  Google Scholar 

  11. Saxena V, Sadoqi M, Shao J (2004) Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol, B 74:29–38

    Article  CAS  Google Scholar 

  12. Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for indocyanine green: biodistribution in healthy mice. Int J Pharm 308:200–204

    Article  CAS  Google Scholar 

  13. Sheng Z, Hu D, Xue M, He M, Gong P, Cai L (2013) Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett 5:145–150

    Article  Google Scholar 

  14. Larush L, Magdassi S (2011) Formation of near-infrared fluorescent nanoparticles for medical imaging. Nanomedicine 6:233–240

    Article  CAS  Google Scholar 

  15. Gomes AJ, Lunardi LO, Marchetti JM, Lunardi CN, Tedesco AC (2006) Indocyanine green nanoparticles useful for photomedicine. Photomed Laser Surg 24:514–521

    Article  CAS  Google Scholar 

  16. Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, Povoski SP (2009) Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J Biomed Opt 14:034020

    Article  Google Scholar 

  17. Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H (2012) Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt 17:046003

    Article  Google Scholar 

  18. Miki K, Oride K, Inoue S, Kuramochi Y, Nayak RR, Matsuoka H, Harada H, Hiraoka M, Ohe K (2010) Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 31:934–942

    Article  CAS  Google Scholar 

  19. Bahmani B, Bacon D, Anvari B (2013) Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications. Sci Rep 3(2180):1–7

    Google Scholar 

  20. Alacam B, Yazici B, Intes X, Nioka S, Chance B (2008) Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods. Phys Med Biol 53:837–859

    Article  Google Scholar 

  21. Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N (2013) Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 3:33–44

    Article  Google Scholar 

  22. Kisu I, Banno K, Yanokura M, Nogami Y, Umene K, Tsuji K, Masuda K, Ueki A, Kobayashi Y, Aoki D (2013) Indocyanine green fluorescence imaging in the pregnant cynomolgus macaque: childbearing is supported by a unilateral uterine artery and vein alone? Arch Gynecol Obstet 288:1309–1315

    Article  Google Scholar 

  23. Ma Y, Sadoqi M, Shao J (2012) Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int J Pharm 436:25–31

    Article  CAS  Google Scholar 

  24. Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L (2013) Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067

    Article  CAS  Google Scholar 

  25. Zhong J, Yang S, Zheng X, Zhou T, Xing D (2013) In vivo photoacoustic therapy with cancer-targeted indocyanine green-containing nanoparticles. Nanomedicine 8:903–919

    Article  CAS  Google Scholar 

  26. Van der Poel HG, Buckle T, Brouwer OR, Olmos RAV, van Leeuwen FWB (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833

    Article  Google Scholar 

  27. Brouwer OR, Buckle T, Vermeeren L, Klop WMC, Balm AJM, van der Poel HG, van Rhijn BW, Horenblas S, Nieweg OE, van Leeuwen FWB, Olmos RAV (2012) Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med 53:1034–1040

    Article  CAS  Google Scholar 

  28. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  Google Scholar 

  29. Thigpen JT (2000) Chemotherapy for advanced ovarian cancer: overview of randomized trials. Semin Oncol 27:11–16

    CAS  Google Scholar 

  30. Chang AY, Rubins J, Asbury R, Boros L, Hui LF (2001) Weekly paclitaxel in advanced non-small cell lung cancer. Semin Oncol 28:10–13

    Article  CAS  Google Scholar 

  31. Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286

    Article  CAS  Google Scholar 

  32. Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44:841

    Article  CAS  Google Scholar 

  33. Liu Y, Yu G, Tian M, Zhang H (2011) Optical probes and the applications in multimodality imaging. Contrast Media Mol Imaging 6:169–177

    CAS  Google Scholar 

  34. Jennings LE, Long NJ (2009) “Two is better than one”—probes for dual-modality molecular imaging. Chem Commun (Camb) 24:3511–3524

    Article  Google Scholar 

  35. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063

    Article  CAS  Google Scholar 

  36. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  37. Saha GB (2010) Fundamentals of nuclear pharmacy. Springer, New York

    Book  Google Scholar 

  38. Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 62:861–869

    Article  CAS  Google Scholar 

  39. Blankenberg FG, Strauss HW (2002) Nuclear medicine applications in molecular imaging. J Magn Reson Imaging 16:352–361

    Article  Google Scholar 

  40. Muhammad HM, Saour KY, Naqishbandi AM (2009) Quantitative and qualitative analysis of plumbagin in the leaf and root of plumbago Europaea growing naturally in Kurdistan by HPLC introduction. J Pharm Sci 18:54–59

    Google Scholar 

  41. Ozkan M, Biber Muftuler FZ, Yurt Kilcar A, Medine EI, Unak P (2013) Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods. Radiochim Acta 101:585–593

    CAS  Google Scholar 

  42. Tekin V, Kozgus Guldu O, Yurt Kilcar A, Medine EI, Yavuz M, Unak P, Timur S (2015) Evaluation of Lawsonia inermis Origin Lawsone compound and its radioiodinated form via in vitro methods. J Radioanal Nucl Chem 303(1):701–708

    Article  CAS  Google Scholar 

  43. Medine IE, Unak P, Sakarya S, Toksöz F (2010) Enzymatic synthesis of uracil glucuronide, labeling with 125/131I, and in vitro evaluation on adenocarcinoma cells. Cancer Biother Radiopharm 25:335–344

    Article  CAS  Google Scholar 

  44. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876

    Article  CAS  Google Scholar 

  45. Medine EI, Odaci D, Gacal BN, Gacal B, Sakarya S, Unak P, Timur S, Yagci Y (2010) A new approach for in vitro imaging of breast cancer cells by anti-metadherin targeted PVA-pyrene. Macromol Biosci 10:657–663

    Article  CAS  Google Scholar 

  46. Ediz M, Avcıbaşı U, Unak P, Biber Muftuler FZ, Medine EI, Yurt Kilcar A, Demiroglu H, Gumuser FG, Sakarya S (2013) Investigation of therapeutic efficiency of bleomycin and bleomycin-glucuronide labeled with 131I on the cancer cell lines. Cancer Biother Radiopharm 28:310–319

    Article  CAS  Google Scholar 

  47. Cekic B, Yurt Kilcar A, Biber Muftuler FZ, Unak P, Medine EI (2012) Radiolabeling of methanol extracts of yarrow (Achillea millefolium l) in rats. Acta Cir Bras 27:294–300

    Article  Google Scholar 

  48. Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857

    Article  CAS  Google Scholar 

  49. Bahmani B, Lytle CY, Walker AM, Gupta S, Vullev V, Anvari B (2013) Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs. Int J Nanomed 8:1609–1620

    Google Scholar 

Download references

Acknowledgments

This work is supported by Ege University Research Fund (contract no 2014-TIP-085). The authors thank to Emine Derviş, Tansu Doğan, Ezgi Sulu, Onur Yıldız, Göksu Işık, Alper Kan and Büşra Karatay for the technical assistance during the in vitro experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilet Zumrut Biber Muftuler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, L., Biber Muftuler, F.Z., Bilgi, A. et al. Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells. J Radioanal Nucl Chem 308, 659–670 (2016). https://doi.org/10.1007/s10967-015-4472-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4472-z

Keywords

Navigation