Skip to main content

Advertisement

Log in

A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Tissue engineering scaffolds are intended as a replacement for conventional bone grafts used in the treatment of bone damages. One of the challenges in bone tissue engineering is to fabricate scaffolds with large pores, high porosity, and at the mean time proper mechanical properties suitable for bone applications. The elastic properties Young’s modulus and yield strength) of these scaffolds have been mostly considered but since bone is a viscoelastic material it is necessary to evaluate this behavior of the scaffolds as well. In the current study the novel method of microsphere sintering as a bottom-up approach was used to fabricate porous three dimensional (3D) bone scaffolds made of poly(ε-caprolactone) with controlled properties. Different variables effective on the mechanical and architectural properties of the scaffold (including time and temperature of the sintering process) were investigated and the optimum conditions (100 min and 64.5 °C) to fabricate scaffolds with the highest possible mechanical properties and porosity were determined (Young’s modulus = 33.61 MPa, yield strength = 2.2 MPa, with 44.5% porosity). Then the viscoelastic properties of this scaffold was evaluated and studied using stress relaxation test (25% stress relaxation) and generalized Maxwell model and compared to bone. Based on these results, the highly interconnected scaffold showed proper mechanical properties, pore size and structure proper for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  Google Scholar 

  2. Stock, U. A., & Vacanti, J. P. (2001). Tissue engineering: Current state and prospects. Annual Review of Medicine, 52, 443–451.

    Article  Google Scholar 

  3. Place, E. S., Evans, N. D., & Stevens, M. M. (2009). Complexity in biomaterials for tissue engineering. Nature Materials, 8(6), 457–470.

    Article  Google Scholar 

  4. Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60(2), 215–228.

    Article  Google Scholar 

  5. Doblaré, M., García, J. M., & Gómez, M. J. (2004). Modelling bone tissue fracture and healing: A review. Engineering Fracture Mechanics, 71(13), 1809–1840.

    Article  Google Scholar 

  6. Laurencin, C. T., Ambrosio, A. M., Borden, M. D., & Cooper, J. A. (1999). Tissue engineering: Orthopedic applications. Annual Review of Biomedical Engineering, 1, 19–46.

    Article  Google Scholar 

  7. Thomson, R. C., Yaszemski, M. J., Powers, J. M., & Mikos, A. G. (1998). Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials, 19(21), 1935–1943.

    Article  Google Scholar 

  8. Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P., & Langer, R. (1993). Prevascularization of porous biodegradable polymers. Biotechnology and Bioengineering, 42(6), 716–723.

    Article  Google Scholar 

  9. Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. Journal of Biomaterials Science, 12(1), 107–124.

    Article  Google Scholar 

  10. Wu, G. H., & Hsu, S. H. (2015). Polymeric-based 3D printing for tissue engineering. Journal of Medical and Biological Engineering, 35(3), 285–292.

    Article  Google Scholar 

  11. Schmelzer, E., Over, P., Gridelli, B., & Gerlach, J. C. (2016). Response of primary human bone marrow mesenchymal stromal cells and dermal keratinocytes to thermal printer materials in vitro. Journal of Medical and Biological Engineering, 36(2), 153–167.

    Article  Google Scholar 

  12. Devin, J. E., Attawia, M. A., & Laurencin, C. T. (1996). Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. Journal of Biomaterials Science, 7(8), 661–669.

    Article  Google Scholar 

  13. Luciani, A., Coccoli, V., Orsi, S., Ambrosio, L., & Netti, P. A. (2008). PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 29(36), 4800–4807.

    Article  Google Scholar 

  14. Ungaro, F., Nair, L. S., & Laurencin, C. T. (2006). Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. Journal of controlled Release, 113(2), 128–136.

    Article  Google Scholar 

  15. Borden, M., Attawia, M., Khan, Y., & Laurencin, C. T. (2002). Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials, 23(2), 551–559.

    Article  Google Scholar 

  16. Boyan, B. D., Hummert, T. W., Dean, D. D., & Schwartz, Z. (1996). Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17(2), 137–146.

    Article  Google Scholar 

  17. Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017.

    Article  Google Scholar 

  18. Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543.

    Article  Google Scholar 

  19. Marra, K. G., Szem, J. W., Kumta, P. N., DiMilla, P. A., & Weiss, L. E. (1999). In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. Journal of Biomedical Materials Research, 47(3), 324–335.

    Article  Google Scholar 

  20. Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical Applications of Biodegradable Polymers. Journal of Polymer Science Part, 49(12), 832–864.

    Article  Google Scholar 

  21. Dee, K.C., Puleo, D.A., & Bizios, R. (2003). Biomaterials. An introduction to tissue-biomaterial interactions (pp. 1–13). Wiley.

  22. Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.

    Article  Google Scholar 

  23. Nazarov, R., Jin, H. J., & Kaplan, D. L. (2004). Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 5(3), 718–726.

    Article  Google Scholar 

  24. Matsuoka, S. (1992). Relaxation phenomena in polymers (p. 322). Munich: Hanser Gardner Publications.

    Google Scholar 

  25. Tschoegl, N. W. (2012). The phenomenological theory of linear viscoelastic behavior: an introduction. Berlin: Springer.

    MATH  Google Scholar 

  26. Troyer, K. L., Estep, D. J., & Puttlitz, C. M. (2012). Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta Biomaterialia, 8(1), 234–243.

    Article  Google Scholar 

  27. Troyer, K. L., & Puttlitz, C. M. (2011). Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomaterialia, 7(2), 700–709.

    Article  Google Scholar 

  28. Troyer, K. L., & Puttlitz, C. M. (2012). Nonlinear viscoelasticty plays an essential role in the functional behavior of spinal ligaments. Journal of Biomechanics, 45(4), 684–691.

    Article  Google Scholar 

  29. Zhang, X., & Gan, R. Z. (2014). Dynamic properties of human stapedial annular ligament measured with frequency-temperature superposition. Journal of Biomechanical Engineering, 136(8), 081004.

    Article  Google Scholar 

  30. Boal, D. H. (2012). Mechanics of the cell (p 608). New York: Cambridge University Press.

    Book  Google Scholar 

  31. Mayergoyz, I. D. (2003). Mathematical models of hysteresis and their applications (2nd ed.). New York: Elsevier Science.

    Google Scholar 

  32. Lakes, R. S. (2009). Viscoelastic materials (p. 461). New York: Cambridge University Press.

    Book  Google Scholar 

  33. Jameela, S. R., Suma, N., & Jayakrishnan, A. (1997). Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: A comparative study. Journal of Biomaterials Science, 8(6), 457–466.

    Article  Google Scholar 

  34. Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 4(3), 377–381.

    Article  Google Scholar 

  35. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.

    Article  Google Scholar 

  36. Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H. S., et al. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24(5), 801–808.

    Article  Google Scholar 

  37. Gloria, A., Russo, T., D’Amora, U., Zeppetelli, S., D’Alessandro, T., Sandri, M., et al. (2013). Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. Journal of the Royal Society Interface, 10(80), 20120833.

    Article  Google Scholar 

  38. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381–387.

    Article  Google Scholar 

  39. Tahriri, M., & Moztarzadeh, F. (2014). Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Applied Biochemistry and Biotechnology, 172(5), 2465–2479.

    Article  Google Scholar 

  40. Wang, Y., Rodriguez-Perez, M. A., Reis, R. L., & Mano, J. F. (2005). Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromolecular Materials and Engineering, 290(8), 792–801.

    Article  Google Scholar 

  41. Alvarez, K., & Nakajima, H. (2009). Metallic scaffolds for bone regeneration. Materials, 2(3), 790–832.

    Article  Google Scholar 

  42. Borden, M., El-Amin, S. F., Attawia, M., & Laurencin, C. T. (2003). Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials, 24(4), 597–609.

    Article  Google Scholar 

  43. Deligianni, D. D., Maris, A., & Missirlis, Y. F. (1994). Stress relaxation behaviour of trabecular bone specimens. Journal of Biomechanics, 27(12), 1469–1476.

    Article  Google Scholar 

  44. Goto, T., Sasaki, N., & Hikichi, K. (1999). Early stage-stress relaxation in compact bone. Journal of Biomechanics, 32(1), 93–97.

    Article  Google Scholar 

  45. Sethuraman, V., Makornkaewkeyoon, K., Khalf, A., & Madihally, S. V. (2013). Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds. Journal of Applied Polymer Science, 130(6), 4237–4244.

    Google Scholar 

  46. Oskui, I. Z., & Hashemi, A. (2016). Dynamic tensile properties of bovine periodontal ligament. Journal of Biomechanics, 49(5), 756–764.

    Article  Google Scholar 

  47. Rho, J. Y., Ashman, R. B., & Turner, C. H. (1993). Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. Journal of Biomechanics, 26(2), 111–119.

    Article  Google Scholar 

  48. Reilly, D. T., Burstein, A. H., & Frankel, V. H. (1974). The elastic modulus for bone. Journal of Biomechanics, 7(3), 271–275.

    Article  Google Scholar 

  49. Garner, E., Lakes, R., Lee, T., Swan, C., & Brand, R. (2000). Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. Journal of Biomechanical Engineering, 122(2), 166–172.

    Article  Google Scholar 

  50. Donnelly, E., Williams, R. M., Downs, S. A., Dickinson, M. E., Baker, S. P., & van der Meulen, M. C. H. (2006). Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. Journal of Materials Research, 21(08), 2106–2117.

    Article  Google Scholar 

  51. Boccaccini, A. R., & Maquet, V. (2003). Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Composites Science and Technology, 63(16), 2417–2429.

    Article  Google Scholar 

  52. Lam, C. X. F., Teoh, S. H., & Hutmacher, D. W. (2007). Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polymer International, 56(6), 718–728.

    Article  Google Scholar 

  53. Lebourg, M., Sabater Serra, R., Mas Estelles, J., Hernandez Sanchez, F., Gomez Ribelles, J. L., & Suay Anton, J. (2008). Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. Journal of Materials Science, 19(5), 2047–2053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Hashemi.

Ethics declarations

Funding

There is no funding or support.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahin-Shamsabadi, A., Hashemi, A. & Tahriri, M. A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold. J. Med. Biol. Eng. 38, 359–369 (2018). https://doi.org/10.1007/s40846-017-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0325-2

Keywords

Navigation