Skip to main content
Log in

Investment time horizon and multifractality of stock price process

  • Article
  • Published:
Evolutionary and Institutional Economics Review Aims and scope Submit manuscript

Abstract

We construct a multifractal random walk for a stock trades model with inverse power law interaction. Consider a stock in a stock market and introduce a discrete time model for pair trades [(first trade \(\rightarrow\) second (reverse) trade] transacted by various types of traders. The type of trader is characterized by the investment time horizon defined as a time difference of the pair trades. We assume that probability distributions of the investment time horizons are given by inverse power law interactions with different exponents depending on the types of traders, and define a discrete time log-volatility process of the stock. Using the method of abstract polymer expansion developed in the study of mathematical physics we obtain a continuous type log-volatility process as a scale limit, and define a log-return process from time 0 as a stochastic integral with respect to a Brownian motion. We then find a condition of the continuous cascade equation which derives a multifractality in the log-return process. Finally, we construct a multifractal random walk using the martingale convergence theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abry P, Chainais P, Coutin L, Pipiras V (2009) Multifractal random walks as fractional Wiener integrals. IEE Trans Inf Theory 55(8):3825–3840

    Article  Google Scholar 

  • Bacry E, Muzy JF (2003) Log-infinitely divisible multifractal processes. Commun Math Phys 236:449–475

    Article  Google Scholar 

  • Brickmont J, Kuroda K, Lebowitz JL (1985) First order phase transitions in lattice and continuous systems; extension of Pirogov–Sina theory. Commun Math Phys 101:501–538

    Article  Google Scholar 

  • Fauth A, Tudor CA (2014) Multifractal random walks with fractional Brownian motion via Mulliavin Calculus. IEE Trans Inf Theory 60(3):1963–1975

    Article  Google Scholar 

  • Kotecky R, Preiss D (1986) Cluster expansion for abstract polymer models. Commun Math Phys 103:419–498

    Article  Google Scholar 

  • Kuroda K, Maskawa J, Murai J (2011) Stock price process and long memory in trade signs. Adv Math Econ 69–92

  • Kuroda K, Maskawa J, Murai J (2013) Application of the cluster expansion to a mathmatical model of the long memory phenomenon in a financial markt. J Stat Phys 152:706–723

    Article  Google Scholar 

  • Mandelbrot BB (1974) Intermittent turbulance in self similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358

    Article  Google Scholar 

  • Mandelbrot BB (1997) Fractals and scaling in finance: discontinuity, concentration, risk. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kuroda.

Appendices

Appendix 1: Proof of Theorem 1

The key point of the proof of Theorem 1 is a application of Kotecky–Preiss theory of abstract polymer expansion developed in the mathematical physics (Kotecky and Preiss 1986; Brickmont et al. 1985).

To describe Kotecky–Peiss theory, we extend \(\Omega _n\) to more general configuration space \(\mathcal{A}_n\) of polymers defined by,

$$\begin{aligned} \mathcal{A}_n=\left\{ A: \mathcal{P}_n \rightarrow \mathbf{N} \cup \{0\}; |A|=\sum _{ {\mathbf {p}}\in \mathcal{P}_n} A({\mathbf {p}}) <\infty \; \right\} \end{aligned}$$

where \(\mathcal{P}_n\) be a set of all polymers.

Each \(A \in \mathcal{A}_n\) is regarded as a configuration of finite number of polymers permitting intersections and multiplicities.

We define functionals \(\varphi (A) , \alpha (A)\) for \(A \in \mathcal{A}_n\) by

$$\begin{aligned}&\varphi (A)=\prod _{{\mathbf {p}}\in \text {supp}A} \varphi ({\mathbf {p}})^{A({\mathbf {p}})}\\&\alpha (A) ={\left\{ \begin{array}{ll} 1 &{}\text { if }\; A!=1 \,\text { and }\; b({\mathbf {p}})\cap b(\mathbf{q})=\emptyset \;\text { for\,all }\, {\mathbf {p}},\mathbf{q} \in \text {supp} \,{ A} \; ({\mathbf {p}}\not = \mathbf{q})\\ 0 &{}\text {otherwise} \end{array}\right. } \\&\chi _n(A)= {\left\{ \begin{array}{ll} 1 &{}\text { if }\; b({\mathbf {p}}) \cap (0, Tn^\alpha ] \not = \emptyset\, \text { \,for\,all } \,{\mathbf {p}}\in \text {supp}\,A \\ 0 &{}\text {otherwise} \end{array}\right. } \end{aligned}$$

where supp \(A=\{{\mathbf {p}}\in \mathcal{P}_n; A({\mathbf {p}})>0 \}\) and \(A!=\prod _{{\mathbf {p}}\in \text {supp}A} A({\mathbf {p}})!.\)

Then the probability distribution (6) is rewritten as

$$\begin{aligned} P_n(A)= \frac{1}{Z_n} \varphi (A) \chi _n(A) \alpha (A). \end{aligned}$$
(14)

To state an important property of abstract polymer expansion we introduce a notion of cluster. \(A \in \mathcal{A}_n\) is called a “cluster”, if \(b({\mathbf {p}}) \subset S_j ({\mathbf {p}}\in \text {supp}A)\) for some \(j \in \{1,\ldots ,n\}\) and there exists a chain of polymers \(\{{\mathbf {p}}_{i_1}, {\mathbf {p}}_{i_2},\ldots , {\mathbf {p}}_{i_m}\} \subset \text {supp} A\) satisfying

$$\begin{aligned} {\mathbf {p}}_{i_1}={\mathbf {p}}_i , {\mathbf {p}}_{i_m}={\mathbf {p}}_\ell\, \text { and }\; b({\mathbf {p}}_{i_k}) \cap b({\mathbf {p}}_{i_{k+1}})\not = \emptyset \; (k=1,\ldots , m-1) , \end{aligned}$$

for any pair of distinct polymers \(({\mathbf {p}}_i , {\mathbf {p}}_\ell )\) of supp A. In other words, a cluster is considered to be a chain of connected polymers. Remark that any cluster is contained in some \(S_j\).

Kotecky-Preiss Theory (Kotecky and Preiss 1986) Let \(D \subset \mathbf{C}\) be a complex domain. If a complex-valued functional \(\varPhi ({\mathbf {p}},\xi )\) defined on \(\mathcal{P}_n \times D\) satisfies

$$\begin{aligned} \mathop{\sum}\limits _{{\begin{array}{c} {{\mathbf {p}}\in \mathcal{P}_n}\\ { b({\mathbf {p}}) \cap b(\mathbf{q}) \not = \emptyset } \end{array}}} e^{a({\mathbf {p}})+\text {d}({\mathbf {p}})} |\varPhi ({\mathbf {p}},\xi )| \le a(\mathbf{q}) \quad ( \mathbf{q} \in \mathcal{P}_n,\xi \in D) \end{aligned}$$
(15)

for some nonnegative real-valued functionals \(a({\mathbf {p}})\) and \(d({\mathbf {p}})\) defined on \(\mathcal{P}_n\) , then there exists a translation invariant functional \(\alpha ^T(\cdot )\) on \(\mathcal{A}_n\) and satisfies

$$\begin{aligned}&{\mathrm{(i)}} \quad \sum _{A \in \mathcal{A}_n} \phi (A,\xi ) \alpha (A) = \exp \left\{ \sum _{A \in \mathcal{A}_n} \phi (A,\xi ) \frac{\alpha ^T(A)}{A!} \right\} \\&{\mathrm{(ii)}}\quad \mathop{\sum\limits} _{{\begin{array}{c} {A \in \mathcal{A}_n}\\ { b(A) \cap b(\mathbf{q}) \not = \emptyset } \end{array}}} \left| \phi (A,\xi ) \frac{\alpha ^T(A)}{A!} \right| \; e^{\text {d}(A)}\;\le \; a(\mathbf{q}) \quad (\mathbf{q} \in \mathcal{P}_n) \end{aligned}$$

where \(b(A)= \bigcup _{{\mathbf {p}}\in \text {supp}A} b({\mathbf {p}}), \phi (A,\xi )=\prod _{{\mathbf {p}}\in \mathcal{P}_n} \phi ({\mathbf {p}},\xi )^{A({\mathbf {p}})}\) and \(\text {d}(A)=\sum _{{\mathbf {p}}\in \mathcal{P}_n} \text {d}({\mathbf {p}}) A({\mathbf {p}}).\) Furthermore, \(\alpha ^T(A)=0\) unless A is a cluster.

We introduce a functional \(Y_n({\mathbf {p}})\) on \(\mathcal{P}_n\) and a functional \(Y_(A)\) on \(\mathcal{A}_n\) defined by

$$\begin{aligned} Y_n({\mathbf {p}})=\frac{1}{c(n)} \sum _{k=1}^m z_k \sum _{\ell \in I_j(t_k)} Z_{(j,\ell )}({\mathbf {p}}) \;( {\mathbf {p}}\subset S_j), \; \text {and}\; Y_n(A)=\sum _{{\mathbf {p}}\in \text {supp}A} Y_n({\mathbf {p}}) A({\mathbf {p}}), \end{aligned}$$

First, we remark that \(|Y_n({\mathbf {p}})| \le \frac{M}{c(n)},\) where \(M= 2H \cdot {\displaystyle \sum _{k=1}^m |z_k|}\), and define a complex domain D by \(D=\{ \xi \in \mathbf{C}; | \text {Re} \xi | \le \frac{c(n)}{M} \}\). If \(\xi \in D\),then \(|e^{\xi Y_n({\mathbf {p}})}| \le e\) for any \({\mathbf {p}}\).

In this model, we define \(\phi ({\mathbf {p}},\xi ), \phi (A,\xi ), a({\mathbf {p}})\) and \(d({\mathbf {p}})\) by

$$\begin{aligned} \phi ({\mathbf {p}},\xi )&= e^{\xi Y_n(\phi )} \cdot \chi _n({\mathbf {p}}) \varphi ({\mathbf {p}}) \quad \phi (A,\xi )=\prod _{ {\mathbf {p}}\in \text {supp}A} \phi ({\mathbf {p}},\xi )^{A({\mathbf {p}})} \\ a({\mathbf {p}})&=C \text {d}_n^\varepsilon |{\mathbf {p}}|\quad \text {d}({\mathbf {p}})=-(1-\varepsilon ) \log \text {d}_n \end{aligned}$$

where \(\varepsilon >0\) is arbitrarily chosen constant, \(C={\displaystyle \frac{4c_1 e^2}{1-\beta (r)} }\) and \({d}_n=n^{-\zeta }\).

Using the estimate

$$\begin{aligned} \sum _{{\mathbf {p}}; 0 \in b({\mathbf {p}})} \varphi ({\mathbf {p}}) < \frac{4c_1}{1-\beta (r)} \cdot \frac{1}{n^\zeta } \end{aligned}$$

we obtain the inequality (15) for our model.

Applying Kotecky–Preiss Theory to our model, we have

$$\begin{aligned}&\varphi _{t_1,\ldots ,t_m}^{(n,r)} (z_1,\ldots ,z_m) \nonumber \\&\quad = \exp \left\{ \sum _A \Bigl (e^{ {\displaystyle \frac{1}{c(n)} \sum _{k=1}^m iz_k W_r^{(n)}( n^\alpha t_k, A)}}-1 \Bigr ) \varphi (A) \chi _n(A) \frac{\alpha ^T(A)}{A!}\right\} \end{aligned}$$
(16)

Setting \(g(n)=\sqrt{n}\) and using Taylor’s expansion, the property that \(\alpha ^T(A)=0\) unless A is a cluster, and arguments developed in Kuroda et al. (2011), we obtain

$$\begin{aligned}&\log \varphi _{t_1,\ldots ,t_m}^{(n,r)}(z_1,\ldots ,z_m) \\&\quad = -\frac{1}{2} \sum _{k=1}^m z_k^2 \cdot \Bigg \{ \frac{1}{n} \sum _{j=rn}^{n-1} \frac{f_1 \mu \left( \frac{j}{n}\right) }{1-\beta \left( \frac{j}{n}\right) } \cdot T \left( \frac{j}{n}\right) a +f_2 T \Bigg \} \cdot \frac{n^{1+\alpha -\zeta }}{c(n)^2} \\&\quad \quad -\frac{1}{2} \mathop{\sum\limits} _{{\begin{array}{c} {1\le k_1,k_2\le m}\\ { k_1 \not = k_2} \end{array}}} z_{k_1}z_{k_2} \Bigg \{ \frac{1}{n} \sum _{j=( (\frac{t}{T})^{\frac{1}{\alpha }}\wedge r)n}^{n-1} \frac{f_1 \mu \left( \frac{j}{n}\right) }{1-\beta \left( \frac{j}{n}\right) } \left( T\left( \frac{j}{n}\right) a -t(k_1,k_2) \right) \\&\quad \quad +f_2 (T -t(k_1,k_2)) \Bigg \} \frac{n^{1+\alpha -\zeta }}{c(n)^2} \end{aligned}$$

If we put \(c(n)=n^{\frac{1}{2} (1+\alpha -\zeta )}\), then the proof of Theorem 1 is obtained.

Appendix 2: Proof of Proposition 4

Since \(\{w_r(t)\}\) is a Gaussian process, \(E[M_r(0,t)^q]\) is described as

$$\begin{aligned} E[M_r(0,t)^q]&=e^{-\frac{1}{2} T(f_2-f_1 \log r)q} \int _0^t \text {d}u_1 \cdots \int _0^t \text {d}u_q E[e^{w_r(u_1)+\cdots +w_r(u_q)}] \\&= e^{-\frac{1}{2} T (f_2-f_1 \log r)q} \int _0^t \text {d}u_1\cdots \int _0^t \text {d}u_q \\&\quad \times \exp \left\{ \frac{1}{2} \sum _{k=1}^q V(w_r(u_k))+ \frac{1}{2}\mathop{\sum}\limits _{{\begin{array}{c} {1\le k, \ell \le q}\\ {k \not =\ell } \end{array}}} \text {Cov}(w_r(u_k), w_r(u_\ell )) \right\} \\&:= I_1+I_2 \end{aligned}$$

where

$$\begin{aligned} I_1&=\int \int _{\begin{array}{c} {0\le u_1,\cdots ,u_q \le t}\\ { \left(\frac{|u_k-u_\ell |}{T}\right)^{\frac{1}{\alpha }} >r \;{\text {for all}} \;k\not =\ell } \end{array}} \exp \left\{ \frac{1}{2} \mathop{\sum}\limits _{{\begin{array}{c} {1\le k, \ell \le q}\\ {k \not =\ell } \end{array}}} \text {Cov}(w_r(u_k), w_r(u_\ell )) \right\} \text {d}u_1 \cdots \text {d}u_q \\ I_2&= \int \int _{\begin{array}{c} {0\le u_1,\ldots ,u_q \le t}\\ { \left(\frac{|u_k-u_\ell |}{T}\right)^{\frac{1}{\alpha }} \le r \;{\text {for some}} \;k\not =\ell } \end{array}} \exp \left\{ \frac{1}{2} \mathop{\sum}\limits _{{\begin{array}{c} {1\le k, \ell \le q}\\ {k \not =\ell } \end{array}}} \text {Cov}(w_r(u_k), w_r(u_\ell )) \right\} \text {d}u_1 \cdots \text {d}u_q \end{aligned}$$

First, we consider the limit of the main term \(I_1\). Put \(\lambda _0=\,{\displaystyle \frac{f_1T}{2\alpha }}\) and assume that \(\lambda _0 q<1\). When \({ \displaystyle ( \frac{|u_k-u_\ell |}{T})^{\frac{1}{\alpha }}>r}\) for all \(k \not = \ell\), the covariance of \(w_r(u_k)\) and \(w_r(u_\ell )\) is given by

$$\begin{aligned} \text {Cov}(w_r(u_k),w_r(u_\ell ))= -\frac{f_1T}{\alpha } \log \frac{|u_k-u_\ell |}{T}, \end{aligned}$$

so that

$$\begin{aligned}&I_1= \int \int _{\begin{array}{c} {0\le u_1,\cdots ,u_q \le t}\\ { (\frac{|u_k-u_\ell |}{T})^{\frac{1}{\alpha }} >r \;\text {for all} \;k\not =\ell } \end{array}} \mathop{\prod}\limits _{{\begin{array}{c} {1\le k,\ell \le q}\\ {k \not = \ell } \end{array}}} \frac{T^{\lambda _0}}{|u_k-u_\ell |^{\lambda _0}}\, \text {d}u_1 \cdots \text {d}u_q\\&\quad \uparrow C_1 \int _0^t \text {d}u_1 \cdots \int _0^t \text {d}u_q \prod _{1\le k<\ell \le q} \frac{1}{|u_k-u_\ell |^{2\lambda _0}}\quad ( r \downarrow 0) \\&\quad = C_1 t^{-\lambda _0 q^2 +(1+\lambda _0) q} \int _0^1 \text {d}u_1 \cdots \int _0^1 \text {d}u_q \prod _{1\le k<\ell \le q} \frac{1}{|u_k-u_\ell |^{2\lambda _0}} \end{aligned}$$

where \(C_1=T^{\lambda _0(q^2-q)}\)

The integral

$$\begin{aligned} I= \int _0^1 \text {d}u_1 \cdots \int _0^1 \text {d}u_q \prod _{1\le k<\ell \le q} \frac{1}{|u_k-u_\ell |^{2\lambda _0}} \end{aligned}$$

is called Selberg Integral and \(I<\infty\) if \(\lambda _0 q <1\).

Next, we consider an estimate for the remainder term \(I_2\). Remark that the covariance of \(w_r(u_k)\) and \(w_r(u_\ell )\) satisfies an estimate

$$\begin{aligned} \text {Cov}(w_r(u_k),w_r(u_\ell )) \le -\frac{f_1T }{\alpha }\log \frac{|u_k-u_\ell |}{T} +f_2T \end{aligned}$$
(17)

in both cases \((\frac{|u_k-u_\ell |}{T})^{\frac{1}{\alpha }} \le r\) and \((\frac{|u_k-u_\ell |}{T})^{\frac{1}{\alpha }} > r\). In \(I_2\) there exists a pair \((u_k,u_\ell )\) satisfying \((\frac{|u_k-u_\ell |}{T})^{\frac{1}{\alpha }} > r\). Without loosing generality we assume that \((\frac{|u_1-u_2|}{T})^{\frac{1}{\alpha }} > r\), so that

$$\begin{aligned} \exp \Big\{ \frac{1}{2} \text {Cov}(w_r(u_1),w_r(u_2))\Big\}= e^{-\lambda _0 \log \frac{|u_1-u_2|}{T} } \end{aligned}$$

Using this equality and (17) and putting

$$\begin{aligned} w_0=u_1-u_2, w_1=u_2, \ldots , w_{q-1}=u_q, \end{aligned}$$

we have

$$\begin{aligned}&I_2 \le \int _{-Tr^\alpha }^{Tr^\alpha } \text {d}w_0 \; e^{-\lambda _0 \log \frac{|w_0|}{T}} \cdot \int _0^t \text {d}w_1 \cdots \int _0^t \text {d}w_{q-1} \mathop{\prod}\limits _{{\begin{array}{c} {1\le k,\ell \le q-1}\\ { k \not = \ell } \end{array}}} e^{-\lambda _0 \log \frac{|w_k-w_\ell |}{T} +f_2T} \\&\quad = 2T^{\lambda _0} ( e^{f_2T} T^{\lambda _0})^{((q-1)^2-(q-1))} \int _0^{Tr^\alpha } \text {d}w_0 \, w_0^{-\lambda _0} \cdot \int _0^t\text {d}w_1 \cdots \int _0^t \text {d}w_{q-1} \\&\qquad \mathop{\prod}\limits _{{\begin{array}{c} {1\le k,\ell \le q-1}\\ { k \not = \ell } \end{array}}} \frac{1}{|w_k-w_\ell |^{\lambda _0}} \\&\quad =C_2 \cdot r^{\alpha (1-\lambda _0)} \cdot t^{-\lambda _0 (q-1)^2+(1+\lambda _0)(q-1)} \cdot \int _0^1 \text {d}v_1 \cdots \int _0^1 \text {d}v_{q-1} \\&\qquad \prod _{1\le k,\ell <\le q-1} \frac{1}{|v_k-v_\ell |^{2\lambda _0}} \end{aligned}$$

where \(C_2 =2T^{\lambda _0} ( e^{f_2T} T^{\lambda _0})^{((q-1)^2-(q-1))} \cdot \frac{1}{1-\lambda _0}\).

Since \(\lambda _0 q<1\), the integral in the right-hand side of the above formula is finite. Hence, \(I_2 \rightarrow 0\) as \(r \downarrow 0\).

Putting these results on \(I_1\) and \(I_2\) together we have the proof of Proposition 4.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, K. Investment time horizon and multifractality of stock price process. Evolut Inst Econ Rev 13, 481–496 (2016). https://doi.org/10.1007/s40844-016-0053-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40844-016-0053-2

Keywords

JEL Classification

Mathematics Subject Classification

Navigation