Skip to main content
Log in

Versatile graphene/polyelectrolyte aqueous dispersion for fiber-based wearable sensors and electroluminescent devices

用于纤维基可穿戴传感器和电致发光器件的多功能石墨烯/聚电解质水性分散液

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Conductive dispersion is a crucial building block for obtaining conductive fibers/textiles used in wearable sensing, energy supply, and flexible display devices. However, despite the graphene’s stable chemical properties and high electrical conductivity, fabricating graphene dispersions compatible with fiber/textile materials remains challenging. Here, an eco-friendly and stable graphene aqueous dispersion was fabricated by introducing poly(sodium-p-styrenesulfonate) (PSS) dispersant based on non-covalent interactions. Due to the modification of PSS, graphene carries negative charges, and the resulting electrostatic repulsion promotes the stable dispersion of graphene. Moreover, PSS assists graphene in forming a robust adhesion to substrates. Flexible mechanical sensors using graphene-modified fibers and fibrous membranes, including stretchable strain sensors and pressure sensors, were developed, showing high stretchability of up to 100% with a sensitivity of 144.6, capable of a sensing strain as small as 0.1%. Flexible electrophysiological electrodes were also fabricated to record electromyography and electrocardiograph signals for a long time. As a proof of concept, a coaxial electroluminescent fiber was demonstrated to provide illumination for a submarine model to complete complex tasks. This advancement will further propel the advanced nanomaterials into wearable fields.

摘要

导电分散液是构建用于可穿戴传感器、能源和柔性显示器件中 导电纤维/织物的关键组成部分. 尽管石墨烯具有稳定的化学性质和高 电导性, 但制备与纤维/织物材料兼容的石墨烯分散液仍然具有挑战性. 本研究通过引入聚苯乙烯磺酸钠(PSS)分散剂, 成功制备了环境友好且 稳定的石墨烯水性分散液. PSS通过非共价作用改性石墨烯, 使其表面 带负电荷, 由此产生的静电排斥促进了石墨烯的稳定分散. 此外, PSS还 有助于石墨烯与基底之间形成牢固的粘附. 我们制备了基于石墨烯改 性的纤维和纤维膜的柔性机械传感器, 包括可拉伸应变传感器和压力 传感器; 其中, 应变传感器具有100%的高拉伸性和144.6的灵敏度, 也能 够感知0.1%的小应变. 此外, 制备的柔性生理电极能够长时间记录肌电 信号和心电信号. 作为概念验证, 制备的同轴电致发光纤维能够为潜艇 模型提供照明, 以完成水下复杂任务. 这项工作将进一步推动先进纳米 材料在可穿戴领域的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding T, Chan KH, Zhou Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun, 2020, 11: 6006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Q, Xu Z, Fang B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A, 2017, 5: 22113–22119

    Article  CAS  Google Scholar 

  3. Liu Y, Tang Y, Guo X, et al. Template-free and stretchable conductive fiber with a built-in helical structure for strain-insensitive signal transmission. ACS Appl Mater Interfaces, 2023, 15: 46379–46387

    Article  CAS  PubMed  Google Scholar 

  4. Chen M, Wang Z, Zhang Q, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat Commun, 2021, 12: 1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao X, Zhou Y, Xu J, et al. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun, 2021, 12: 6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan S, Zhu M. Fiber electronics bring a new generation of acoustic fabrics. Adv Fiber Mater, 2022, 4: 321–323

    Article  Google Scholar 

  7. Chen C, Feng J, Li J, et al. Functional fiber materials to smart fiber devices. Chem Rev, 2023, 123: 613–662

    Article  CAS  PubMed  Google Scholar 

  8. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240–245

    Article  CAS  PubMed  Google Scholar 

  9. Su Y, Li W, Cheng X, et al. High-performance piezoelectric composites via β phase programming. Nat Commun, 2022, 13: 4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan H, Chen G, Chen Y, et al. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens Bioelectron, 2023, 222: 114999

    Article  CAS  PubMed  Google Scholar 

  11. Dai J, Xie G, Chen C, et al. Hierarchical piezoelectric composite film for self-powered moisture detection and wearable biomonitoring. Appl Phys Lett, 2024, 124: 053701

    Article  CAS  Google Scholar 

  12. Chen C, Xie G, Dai J, et al. Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy, 2023, 116: 108788

    Article  CAS  Google Scholar 

  13. Zhang Q, Xie G, Duan M, et al. Zinc oxide nanorods for light-activated gas sensing and photocatalytic applications. ACS Appl Nano Mater, 2023, 6: 17445–17456

    Article  CAS  Google Scholar 

  14. Li Y, Li W, Jin Z, et al. Ternary ordered assembled piezoelectric composite for self-powered ammonia detection. Nano Energy, 2024, 122: 109291

    Article  CAS  Google Scholar 

  15. Lee S, Shin S, Lee S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater, 2015, 25: 3114–3121

    Article  CAS  Google Scholar 

  16. Xiang C, Lu W, Zhu Y, et al. Carbon nanotube and graphene nanoribbon-coated conductive kevlar fibers. ACS Appl Mater Interfaces, 2012, 4: 131–136

    Article  CAS  PubMed  Google Scholar 

  17. Liang X, Li H, Dou J, et al. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv Mater, 2020, 32: 2000165

    Article  CAS  Google Scholar 

  18. Chen H, Xu H, Luo M, et al. Highly conductive, ultrastrong, and flexible wet-spun PEDOT:PSS/Ionic liquid fibers for wearable electronics. ACS Appl Mater Interfaces, 2023, 15: 20346–20357

    Article  CAS  PubMed  Google Scholar 

  19. Zhong J, Chen R, Shan T, et al. Continuous fabrication of core-sheath fiber for strain sensing and self-powered application. Nano Energy, 2023, 118: 108950

    Article  CAS  Google Scholar 

  20. Liang X, Zhu M, Li H, et al. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater, 2022, 32: 2200162

    Article  CAS  Google Scholar 

  21. Cao C, Lin Z, Liu X, et al. Strong reduced graphene oxide coated Bombyx mori silk. Adv Funct Mater, 2021, 31: 2102923

    Article  CAS  Google Scholar 

  22. Wei Y, Li X, Wang Y, et al. Graphene-based multifunctional textile for sensing and actuating. ACS Nano, 2021, 15: 17738–17747

    Article  CAS  PubMed  Google Scholar 

  23. Li P, Yang M, Liu Y, et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat Commun, 2020, 11: 2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu Z, Jiao W, Huang Y, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J Mater Chem A, 2021, 9: 9634–9643

    Article  CAS  Google Scholar 

  25. Qiao Y, Jian J, Tang H, et al. An intelligent nanomesh-reinforced graphene pressure sensor with an ultra large linear range. J Mater Chem A, 2022, 10: 4858–4869

    Article  CAS  Google Scholar 

  26. Chang D, Liu J, Fang B, et al. Reversible fusion and fission of graphene oxide-based fibers. Science, 2021, 372: 614–617

    Article  CAS  PubMed  Google Scholar 

  27. Zelenák F, Kováčová M, Moravec Z, et al. Fast, scalable, and environmentally friendly method for production of stand-alone ultrathin reduced graphene oxide paper. Carbon, 2023, 215: 118436

    Article  Google Scholar 

  28. Liu Z, Ma Z, Qian B, et al. A facile and scalable method of fabrication of large-area ultrathin graphene oxide nanofiltration membrane. ACS Nano, 2021, 15: 15294–15305

    Article  CAS  PubMed  Google Scholar 

  29. Cao CF, Yu B, Huang J, et al. Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano, 2022, 16: 20865–20876

    Article  CAS  PubMed  Google Scholar 

  30. Tang P, Deng Z, Zhang Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv Funct Mater, 2022, 32: 2112156

    Article  CAS  Google Scholar 

  31. Zhang Z, Tang L, Chen C, et al. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J Mater Chem A, 2021, 9: 875–883

    Article  CAS  Google Scholar 

  32. De S, King PJ, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6: 458–464

    Article  CAS  PubMed  Google Scholar 

  33. Lotya M, Hernandez Y, King PJ, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc, 2009, 131: 3611–3620

    Article  CAS  PubMed  Google Scholar 

  34. Kumar P, Bohidar HB. Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surfs A-Physicochem Eng Aspects, 2010, 361: 13–24

    Article  CAS  Google Scholar 

  35. Vinayan BP, Nagar R, Raman V, et al. Synthesis of graphene-multi-walled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem, 2012, 22: 9949–9956

    Article  CAS  Google Scholar 

  36. Liu S, Tian J, Wang L, et al. Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules, 2010, 43: 10078–10083

    Article  CAS  Google Scholar 

  37. Coleman JN. Liquid exfoliation of defect-free graphene. Acc Chem Res, 2013, 46: 14–22

    Article  CAS  PubMed  Google Scholar 

  38. Ciesielski A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 2014, 43: 381–398

    Article  CAS  PubMed  Google Scholar 

  39. Marom N, Bernstein J, Garel J, et al. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys Rev Lett, 2010, 105: 046801

    Article  PubMed  Google Scholar 

  40. Ardyani T, Mohamed A, Abu Bakar S, et al. A guide to designing graphene-philic surfactants. J Colloid Interface Sci, 2022, 620: 346–355

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z, Wang J, Pan D, et al. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano, 2018, 12: 2521–2530

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Z, Cai W, Xu Z, et al. Multi-role p-styrene sulfonate assisted electrochemical preparation of functionalized graphene nanosheets for improving fire safety and mechanical property of polystyrene composites. Compos Part B-Eng, 2020, 181: 107544

    Article  CAS  Google Scholar 

  43. Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano, 2022, 16: 19373–19384

    Article  CAS  PubMed  Google Scholar 

  44. Eltoukhy Allam N, Nabeel Anwar M, Kuznetsov PV, et al. Enzyme-assisted dewatering of oil sands tailings: Significance of water chemistry and biological activity. Chem Eng J, 2022, 437: 135162

    Article  CAS  Google Scholar 

  45. Abdelkader AM, Kinloch IA, Dryfe RAW. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents. ACS Appl Mater Interfaces, 2014, 6: 1632–1639

    Article  CAS  PubMed  Google Scholar 

  46. Balamurugan T, Berchmans S. Non-enzymatic detection of bilirubin based on a grapheme-polystyrene sulfonate composite. RSC Adv, 2015, 5: 50470–50477

    Article  CAS  Google Scholar 

  47. He Y, Lin X, Feng Y, et al. Carbon nanotube ink dispersed by chitin nanocrystals for thermoelectric converter for self-powering multifunctional wearable electronics. Adv Sci, 2022, 9: 2204675

    Article  CAS  Google Scholar 

  48. Pan S, Zhang F, Cai P, et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv Funct Mater, 2020, 30: 1909540

    Article  CAS  Google Scholar 

  49. He K, Liu Z, Wan C, et al. An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush. Adv Mater, 2020, 32: 2001130

    Article  CAS  Google Scholar 

  50. Jin H, Matsuhisa N, Lee S, et al. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv Mater, 2017, 29: 1605848

    Article  Google Scholar 

  51. Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med, 2017, 89: 389–396

    Article  PubMed  Google Scholar 

  52. Uchaipichat N, Thanawattano C, Buakhamsri A. The development of ST-episode detection in holter monitoring for myocardial ischemia. Procedia Comput Sci, 2016, 86: 188–191

    Article  Google Scholar 

  53. Imai A, Kaneoka K, Okubo Y, et al. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J Orthop Sports Phys Ther, 2010, 40: 369–375

    Article  PubMed  Google Scholar 

  54. Moon Jeong S, Song S, Lee SK, et al. Mechanically driven light-generator with high durability. Appl Phys Lett, 2013, 102: 051110

    Article  Google Scholar 

  55. Brubaker CD, Newcome KN, Jennings GK, et al. 3D-Printed alternating current electroluminescent devices. J Mater Chem C, 2019, 7: 5573–5578

    Article  CAS  Google Scholar 

  56. Zhou Y, Cao S, Wang J, et al. Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl Mater Interfaces, 2018, 10: 44760–44767

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Yan C, Cai G, et al. Extremely stretchable electroluminescent devices with ionic conductors. Adv Mater, 2016, 28: 4490–4496

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Cui L, Shi X, et al. Textile display for electronic and brain-interfaced communications. Adv Mater, 2018, 30: 1800323

    Article  Google Scholar 

  59. Qu C, Zhang Y, Chen Z, et al. A flexible and wearable visual pressure sensing system based on piezoresistive sensors and alternating current electroluminescence devices. Adv Mater Technologies, 2024, 9: 2301280

    Article  CAS  Google Scholar 

  60. Tan YJ, Godaba H, Chen G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat Mater, 2020, 19: 182–188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52373201, 52103252 and 52090033), the Fundamental Research Funds for the Central Universities (2232024Y-01), and the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (Donghua University).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Pan S and Zhu M conceived and designed the research project. Miao Z performed the experiments and collected the data. Miao Z and Pan S wrote the manuscript. Yu R, Bai X, Du X, Yang Z and Zhou T assisted with some experimental measurements and manuscript correction. All authors contributed to the general discussion.

Corresponding author

Correspondence to Shaowu Pan  (潘绍武).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Shaowu Pan is currently a professor at the School of Materials Science and Engineering at Donghua University. He received his BE degree in chemistry at Hunan University of Science and Technology in 2009, his MS degree in organic chemistry at South China Normal University in 2012, and his PhD in materials science and engineering at Tongji University in 2015 with a joint study experience at Fudan University. He then worked as a postdoctoral fellow at the School of Materials Science and Engineering, Nanyang Technological University in Singapore before joining Donghua University in 2020. His research interests include smart materials, flexible sensing, and fiber electronics.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Z., Yu, R., Bai, X. et al. Versatile graphene/polyelectrolyte aqueous dispersion for fiber-based wearable sensors and electroluminescent devices. Sci. China Mater. 67, 1915–1925 (2024). https://doi.org/10.1007/s40843-024-2961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2961-5

Keywords

Navigation