Skip to main content
Log in

Single-atomic nickel supported on nitrogen-doped porous carbon to boost polysulfide conversion in lithium-sulfur batteries

Ni单原子负载氮掺杂多孔碳促进锂硫电池中的多硫化物转化

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Single-atomic catalysts consisting of atomically dispersed metal sites within nitrogen-doped carbon matrix (M SAC@NC) have emerged as high-performance electrocatalytic materials in Li-S batteries due to their maximum atom utilization, unique physicochemical properties, and superior catalytic activity. In the present work, a series of M SAC@NC (M = Ni, Co, Fe) with similar structural and physicochemical properties have been successfully prepared by the combination of physical adsorption and pyrolysis. The combination of the aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray adsorption spectra indicates the successful formation of single-atomic metal sites. Moreover, the catalytic activity trend toward sulfur redox reaction is observed to be Ni SAC@NC > Co SAC@NC > Fe SAC@NC, and the Ni SAC@NC delivers the highest capacity of 1,280.6 mAh g−1 and long-time stability at a decay rate of 0.07% per cycle for 800 cycles at 0.5 C, demonstrating excellent battery performance.

摘要

由分散在氮掺杂碳载体上的原子级金属位点组成的单原子催化剂(M SAC@NC) 因其具有最大的原子利用率、 独特的物理化学性质和优异的催化活性, 已成为Li-S电池中的高性能电催化材料. 本文采用物理吸附和热解相结合的方法, 成功制备了一系列具有相似结构和理化性质的M SAC@NC (M = Ni, Co, Fe). 双球差校正高角环形暗场扫描透射电子显微镜和X射线吸收光谱表明成功形成了单原子金属位点. 此外, 对硫氧化还原反应的催化活性趋势为Ni SAC@NC > Co SAC@NC > Fe SAC@NC, 其中Ni SAC@NC在0.5 C下表现出1280.6 mAh g−1的最高容量, 循环800次后, 平均每圈容量衰减率仅为0.07%, 具有优异的电池性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imoisili PE, Ren J, Jen TC. Single-atom catalysts for lithium sulfur batteries via atomic layer deposition process. Electrochem Commun, 2022, 135: 107215

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, et al. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  3. Yin YX, Xin S, Guo YG, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 2013, 52: 13186–13200

    Article  CAS  Google Scholar 

  4. Xin S, Zhang X, Wang L, et al. Roadmap for rechargeable batteries: present and beyond. Sci China Chem, 2024, 67: 13–42

    Article  CAS  Google Scholar 

  5. Fang R, Zhao S, Sun Z, et al. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater, 2017, 29: 1606823

    Article  Google Scholar 

  6. Bhargav A, He J, Gupta A, et al. Lithium-sulfur batteries: attaining the critical metrics. Joule, 2020, 4: 285–291

    Article  Google Scholar 

  7. Xue W, Shi Z, Suo L, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat Energy, 2019, 4: 374–382

    Article  CAS  Google Scholar 

  8. Chen J, Zhang Y, Yang J, et al. Post lithium-sulfur battery era: challenges and opportunities towards practical application. Sci China Chem, 2024, 67: 106–121

    Article  CAS  Google Scholar 

  9. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8: 500–506

    Article  CAS  PubMed  Google Scholar 

  10. Pei F, Lin L, Ou D, et al. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat Commun, 2017, 8: 482

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang A, Zhou G, Kong X, et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat Nanotechnol, 2020, 15: 231–237

    Article  CAS  PubMed  Google Scholar 

  12. Barragán-Iglesias P, Lou TF, Bhat VD, et al. Inhibition of poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice. Nat Commun, 2018, 9: 10

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu J, Xiao J, Li A, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for highperformance Li-S batteries. Angew Chem Int Ed, 2020, 59: 13071–13078

    Article  CAS  Google Scholar 

  14. Al Salem H, Babu G, V. Rao C, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc, 2015, 137: 11542–11545

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv Sci, 2018, 5: 1700270

    Article  Google Scholar 

  16. Geng C, Hua W, Wang D, et al. Demystifying the catalysis in lithium-sulfur batteries: characterization methods and techniques. SusMat, 2021, 1: 51–65

    Article  CAS  Google Scholar 

  17. Primbs M, Sun Y, Roy A, et al. Establishing reactivity descriptors for platinum group metal (PGM)-free Fe-N-C catalysts for PEM fuel cells. Energy Environ Sci, 2020, 13: 2480–2500

    Article  CAS  Google Scholar 

  18. Du L, Xing L, Zhang G, et al. Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat, 2021, 1: 150–173

    Article  CAS  Google Scholar 

  19. Ma F, Wan Y, Wang X, et al. Bifunctional atomically dispersed Mo-N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano, 2020, 14: 10115–10126

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Xi B, Zhang Z, et al. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew Chem Int Ed, 2021, 60: 15563–15571

    Article  CAS  Google Scholar 

  21. Zhang L, Liang P, Shu HB, et al. Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: both strong anchoring and catalysing based on first principles calculation. J Colloid Interface Sci, 2018, 529: 426–431

    Article  CAS  PubMed  Google Scholar 

  22. Zhang T, Chen Z, Zhao J, et al. Metal-N4/graphene as an efficient anchoring material for lithium-sulfur batteries: a computational study. Diamond Relat Mater, 2018, 90: 72–78

    Article  CAS  Google Scholar 

  23. Zhou G, Zhao S, Wang T, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett, 2020, 20: 1252–1261

    Article  CAS  PubMed  Google Scholar 

  24. Liang HJ, Gu ZY, Zheng XY, et al. Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. J Energy Chem, 2021, 59: 589–598

    Article  CAS  Google Scholar 

  25. Xiao R, Yu T, Yang S, et al. Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. Energy Storage Mater, 2022, 51: 890–899

    Article  Google Scholar 

  26. Xiao C, Song W, Liang J, et al. P-block tin single atom catalyst for improved electrochemistry in a lithium-sulfur battery: a theoretical and experimental study. J Mater Chem A, 2022, 10: 3667–3677

    Article  CAS  Google Scholar 

  27. Zhang Y, Kang C, Zhao W, et al. d-p hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li-S batteries. J Am Chem Soc, 2023, 145: 1728–1739

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Wang YY, Hou BH, et al. Nano-SnO2 decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries. Acta Metall Sin (Engl Lett), 2021, 34: 390–400

    Article  CAS  Google Scholar 

  29. Luo XX, Li WH, Liang HJ, et al. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew Chem Int Ed, 2022, 61: e202117661

    Article  CAS  Google Scholar 

  30. Yang Z, Zhao Z, Zhou H, et al. Cobalt-based double catalytic sites on mesoporous carbon as reversible polysulfide catalysts for fast-kinetic Li-S batteries. ACS Appl Mater Interfaces, 2021, 13: 51174–51185

    Article  CAS  PubMed  Google Scholar 

  31. Gao Y, Wu T, Yang C, et al. Activity trends and mechanisms in per-oxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts. Angew Chem Int Ed, 2021, 60: 22513–22521

    Article  CAS  Google Scholar 

  32. Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal, 2019, 2: 259–268

    Article  CAS  Google Scholar 

  33. Li Z, Huang Y, Yuan L, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon, 2015, 92: 41–63

    Article  CAS  Google Scholar 

  34. Wang M, Xia X, Zhong Y, et al. Porous carbon hosts for lithium-sulfur batteries. Chem Eur J, 2019, 25: 3710–3725

    Article  CAS  PubMed  Google Scholar 

  35. Fang D, Wang Y, Qian C, et al. Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium-sulfur batteries. Adv Funct Mater, 2019, 29: 1900875

    Article  Google Scholar 

  36. Wang DW, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed, 2008, 47: 373–376

    Article  CAS  Google Scholar 

  37. Wang J, Li CL, Tu BJ, et al. Integrated epigenetics, transcriptomics, and metabolomics to analyze the mechanisms of benzo[a]pyrene neurotoxicity in the hippocampus. Toxicol Sci, 2018, 166: 65–81

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Li J, Xi S, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew Chem Int Ed, 2019, 58: 14871–14876

    Article  CAS  Google Scholar 

  39. Wang J, Zhang J, Cheng S, et al. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett, 2021, 21: 3245–3253

    Article  CAS  PubMed  Google Scholar 

  40. Cui T, Ma L, Wang S, et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J Am Chem Soc, 2021, 143: 9429–9439

    Article  CAS  PubMed  Google Scholar 

  41. Zhou L, Danilov DL, Eichel RA, et al. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv Energy Mater, 2021, 11: 2001304

    Article  CAS  Google Scholar 

  42. Jiang Z, Wen B, Huang Y, et al. New reaction pathway of superoxide disproportionation induced by a soluble catalyst in Li-O2 batteries. Angew Chem Int Ed, 2024, 63: e202315314

    Article  CAS  Google Scholar 

  43. Wang D, Yan H, Yang Y, et al. Promoting polysulfide bidirectional conversion by one-dimensional p-n junctions for Li-S batteries. Sci China Mater, 2024, 67: 93–106

    Article  CAS  Google Scholar 

  44. Wang Q, Yang Y, Sun F, et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv Energy Mater, 2021, 11: 2100219

    Article  CAS  Google Scholar 

  45. Yu G, Ye G, Wang C, et al. A flame-retardant binder with high polysulfide affinity for safe and stable lithium-sulfur batteries. Sci China Chem, 2024, 67: 1028–1036

    Article  CAS  Google Scholar 

  46. Ma Y, Wu T, Jiao Y, et al. Single nickel atom catalysts enable fast polysulfide redox for safe and long-cycle lithium-sulfur batteries. Small, 2022, 18: 2205470

    Article  CAS  Google Scholar 

  47. Xia Z, Zhang H, Shen K, et al. Wavelet analysis of extended X-ray absorption fine structure data: theory, application. Physica B-Condensed Matter, 2018, 542: 12–19

    Article  CAS  Google Scholar 

  48. Timoshenko J, Roldan Cuenya B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem Rev, 2021, 121: 882–961

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, Yang L, Zhang P, et al. MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfide mediation via defect engineering. Adv Mater, 2021, 33: 2008447

    Article  CAS  Google Scholar 

  50. Zhang L, Liu D, Muhammad Z, et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater, 2019, 31: 1903955

    Article  CAS  Google Scholar 

  51. Lin H, Yang L, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ Sci, 2017, 10: 1476–1486

    Article  CAS  Google Scholar 

  52. Zhou T, Liang J, Ye S, et al. Accelerating polysulfides conversion by constructing Lewis acidic Mn--N4 single atomic sites for Li-S battery with high sulfur loading. Chem Eng J, 2024, 482: 148747

    Article  CAS  Google Scholar 

  53. Wang J, Jia L, Zhong J, et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater, 2019, 18: 246–252

    Article  Google Scholar 

  54. Feng L, Wang S. Bidirectional catalysis of Co0.4Ni1.6P for Li2S1–2 deposition/decomposition reactions in Li-S batteries. Sci China Chem, 2023, 66: 2267–2273

    Article  CAS  Google Scholar 

  55. Fan FY, Carter WC, Chiang YM Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries Adv Mater, 2015, 27: 5203–5209

    Article  CAS  PubMed  Google Scholar 

  56. Yuan H, Peng HJ, Li BQ, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv Energy Mater, 2019, 9: 1802768

    Article  Google Scholar 

  57. Fu L, Liu D, Zuo X, et al. Co nanoparticles-embedded hierarchical porous carbon network as high-performance cathode for lithium-sulfur batteries. Sci China Mater, 2023, 66: 4587–4594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Key Research and Development Program of Hunan Province, China (2023GK2015) and the Science and Technology Innovation Leader Program of Hunan Province (2022RC3049). Fundamental Research Funds for the Central Universities (202044011), Natural Science Foundation of Changsha (KQ2208259)

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen L performed the experiments and data analysis and drafted the manuscript. Chang Z, Cai S and He Q provided experimental help and assisted in analyzing the experimental data. Sun Y and Pan A supervised the project and revised the original manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yanyan Sun  (孙焱焱) or Anqiang Pan  (潘安强).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Leyuan Chen is a Master’s candidate at Central South University under the supervision of Prof Anqiang Pan. Her current interest focuses on the effect of transition metal single-atom catalysts on the performance of lithium-sulfur batteries.

Yanyan Sun received her PhD from the Technical University of Berlin in 2018 under the supervision of Professor Peter Strasser who is an expert in electrochemistry, and stayed in the group to continue her postdoctoral research. After that, she joined in the Central South University. Her research focuses on the design of functionalized carbon-based materials for electrocatalysis and electrosynthesis as well as sodium-ion batteries.

Anqiang Pan received his BE (2005) and PhD (2011) degrees in materials physics and chemistry from the Central South University. He joined the faculty of the Central South University in 2012 and was promoted to a Sheng-Hua Professor in 2013. His current interests are controllable synthesis of nanostructured materials and their applications in energy storage and conversion devices, such as LIBs, ZIBs and supercapacitors.

Supporting Information

40843_2024_2934_MOESM1_ESM.pdf

Single-Atomic Nickel Supported on Nitrogen-Doped Porous Carbon to Boost Polysulfide Conversion in Lithium-Sulfur Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Sun, Y., Chang, Z. et al. Single-atomic nickel supported on nitrogen-doped porous carbon to boost polysulfide conversion in lithium-sulfur batteries. Sci. China Mater. 67, 1938–1946 (2024). https://doi.org/10.1007/s40843-024-2934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2934-9

Keywords

Navigation