Skip to main content
Log in

Progress and challenges of photocatalytic reduction of CO2 with g-C3N4-based photocatalysts in the context of carbon neutrality

碳中和背景下基于g-C3N4光催化CO2还原的研究进 展与挑战

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Global warming has seriously threatened the industrial/agricultural productions and human life and has become one of the major challenges facing the world today. Carbon neutrality is an important measure for mitigating the greenhouse effect, and photocatalytic CO2 reduction can effectively reduce carbon emissions and promote the carbon cycle. g-C3N4 has attracted much attention due to its simple preparation process, high stability, suitable energy band position, and excellent photocatalytic performance; thus, improving its efficiency in photocatalytic CO2 reduction has become the focus of current research. The importance of carbon neutrality for the global ecological balance and environmental sustainability and the important role and development prospects of g-C3N4 photocatalytic CO2 reduction in the context of carbon neutrality are the main focuses of this review. The current methods and technical means to solve the difficulty of the g-C3N4 photocatalytic CO2 reduction are summarized. The possible problems in the field of g-C3N4 photocatalytic CO2 reduction are discussed, and future research directions are proposed. The aim of this work is to provide theoretical support for the practical applications of g-C3N4 photocatalytic CO2 reduction and to present potential design concepts for efficient g-C3N4-based photocatalysts.

摘要

全球变暖对人类的生产生活造成了严重的威胁, 已成为当今世 界面临的重大挑战之一. 碳中和这一重要举措能够有效缓解全球变暖 的进程, 在这一背景下光催化CO2还原可有效减少碳排放且促进碳循 环. g-C3N4因其制备工艺简单、稳定性高、能带位置适宜以及优异的 光催化性能而备受关注. 因此, 提高g-C3N4光催化CO2还原效率是当前 研究的热点问题. 本文重点探究了碳中和对于全球生态平衡和环境可 持续发展的重要性以及在碳中和背景下g-C3N4光催化CO2还原的重要 作用和发展前景; 综述了目前解决限制g-C3N4光催化CO2还原瓶颈问题 的方法和技术手段. 对g-C3N4在光催化CO2还原领域存在的问题进行讨 论, 提出了未来的研究方向, 并进行展望. 本综述旨在为碳中和背景下 基于g-C3N4催化剂光催化CO2还原的应用提供理论支持, 为基于g-C3N4 高效CO2还原光催化剂的设计提供思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohse-Höinghaus K. Combustion, chemistry, and carbon neutrality. Chem Rev, 2023, 123: 5139–5219

    Article  PubMed  Google Scholar 

  2. Wang F, Harindintwali JD, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality. Innovation, 2021, 2: 100180

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Deng Z, He G, et al. Challenges and opportunities for carbon neutrality in China. Nat Rev Earth Environ, 2022, 3: 141–155

    Article  Google Scholar 

  4. Zhang B, Zhang J, Zhang F, et al. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv Funct Mater, 2020, 30: 1906194

    Article  CAS  Google Scholar 

  5. Qiu N, Li J, Wang H, et al. Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction. Sci China Mater, 2022, 65: 3302–3323

    Article  CAS  Google Scholar 

  6. Mikkelsen M, Jørgensen M, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3: 43–81

    Article  CAS  Google Scholar 

  7. Wang J, Fu J, Zhao Z, et al. Benefit analysis of multi-approach biomass energy utilization toward carbon neutrality. Innovation, 2023, 4: 100423

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang N, Long R, Gao C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater, 2018, 61: 771–805

    Article  CAS  Google Scholar 

  9. Liu L, Zhao H, Andino JM, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal, 2012, 2: 1817–1828

    Article  CAS  Google Scholar 

  10. Zhang H, Li Y, Wang J, et al. An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Appl Catal B-Environ, 2021, 284: 119692

    Article  CAS  Google Scholar 

  11. Ali S, Razzaq A, Kim H, et al. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chem Eng J, 2022, 429: 131579

    Article  CAS  Google Scholar 

  12. Chen J, Xiao Y, Wang N, et al. Facile synthesis of a Z-scheme CeO2/C3N4 heterojunction with enhanced charge transfer for CO2 photo-reduction. Sci China Mater, 2023, 66: 3165–3175

    Article  CAS  Google Scholar 

  13. Wang M, Shen M, Jin X, et al. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem Eng J, 2022, 427: 130987

    Article  CAS  Google Scholar 

  14. Li P, Hu H, Luo G, et al. Crystal facet-dependent CO2 photoreduction over porous ZnO nanocatalysts. ACS Appl Mater Interfaces, 2020, 12: 56039–56048

    Article  CAS  PubMed  Google Scholar 

  15. Dong YJ, Jiang Y, Liao JF, et al. Construction of a ternary WO3/ CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Sci China Mater, 2022, 65: 1550–1559

    Article  CAS  Google Scholar 

  16. Pan YX, You Y, Xin S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc, 2017, 139: 4123–4129

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Tian Z, Zhao Z, et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces, 2011, 3: 3594–3601

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Chen Y, Liu X, et al. Boosted charge transfer and photo-catalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions. Sci China Mater, 2022, 65: 400–412

    Article  CAS  Google Scholar 

  19. Wang Y, Qu Y, Qu B, et al. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv Mater, 2021, 33: 2105482

    Article  CAS  Google Scholar 

  20. Kuang Y, Shang J, Zhu T. Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl Mater Interfaces, 2020, 12: 3580–3591

    Article  CAS  PubMed  Google Scholar 

  21. Cho KM, Kim KH, Park K, et al. Amine-functionalized graphene/CdS composite for photocatalytic reduction of CO2. ACS Catal, 2017, 7: 7064–7069

    Article  CAS  Google Scholar 

  22. Liang J, Zhang W, Liu Z, et al. Tuning metal-free hierarchical boron nitride-like catalyst for enhanced photocatalytic CO2 reduction activity. ACS Catal, 2022, 12: 12217–12226

    Article  CAS  Google Scholar 

  23. Sun K, Qian Y, Jiang H. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew Chem Int Ed, 2023, 62: e202217565

    Article  CAS  Google Scholar 

  24. Chen Y, Wang D, Deng X, et al. Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction. Catal Sci Technol, 2017, 7: 4893–4904

    Article  CAS  Google Scholar 

  25. Dong M, Gu JX, Sun CY, et al. Photocatalytic reduction of low-concentration CO2 by metal–organic frameworks. Chem Commun, 2022, 58: 10114–10126

    Article  CAS  Google Scholar 

  26. Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photo-catalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80

    Article  CAS  PubMed  Google Scholar 

  27. Lu Q, Eid K, Li W, et al. Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: Strategy and mechanism. Green Chem, 2021, 23: 5394–5428

    Article  CAS  Google Scholar 

  28. Ong W, Putri LK, Mohamed AR. Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: A dimensionality perspective. Chem Eur J, 2020, 26: 9710–9748

    Article  CAS  PubMed  Google Scholar 

  29. Höhne N, Gidden MJ, den Elzen M, et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat Clim Chang, 2021, 11: 820–822

    Article  Google Scholar 

  30. Zhang D, Li Y, Li Y, et al. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat, 2022, 3: 417–446

    Article  CAS  Google Scholar 

  31. Hallegatte S, Rogelj J, Allen M, et al. Mapping the climate change challenge. Nat Clim Change, 2016, 6: 663–668

    Article  Google Scholar 

  32. Fuglestvedt J, Rogelj J, Millar RJ, et al. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Phil Trans R Soc A, 2018, 376: 20160445

    Article  PubMed  PubMed Central  Google Scholar 

  33. Höhne N, den Elzen M, Rogelj J, et al. Emissions: World has four times the work or one-third of the time. Nature, 2020, 579: 25–28

    Article  PubMed  Google Scholar 

  34. Figueres C, Schellnhuber HJ, Whiteman G, et al. Three years to safeguard our climate. Nature, 2017, 546: 593–595

    Article  CAS  PubMed  Google Scholar 

  35. Levin K, Rich D. Turning points: Trends in countries’ reaching peak greenhouse gas emissions over time. World Resources Institute, 2017. https://www.wri.org/research/turning-points-trends-countries-reaching-peak-greenhouse-gas-emissions-over-time

  36. Nie H, Kemp R, Fan Y. Investigating the adoption of energy-saving measures in residential sector: The contribution to carbon neutrality of China and Europe. Resources Conservation Recycling, 2023, 190: 106791

    Article  Google Scholar 

  37. Lyu X, Yang K, Fang J. Utilization of resources in abandoned coal mines for carbon neutrality. Sci Total Environ, 2022, 822: 153646

    Article  PubMed  Google Scholar 

  38. Kang Z, Liao Q, Zhang Z, et al. Carbon neutrality orientates the reform of the steel industry. Nat Mater, 2022, 21: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  39. De La Peña L, Guo R, Cao X, et al. Accelerating the energy transition to achieve carbon neutrality. Resources Conservation Recycling, 2022, 177: 105957

    Article  Google Scholar 

  40. Davis SJ, Lewis NS, Shaner M, et al. Net-zero emissions energy systems. Science, 2018, 360: eaas9793

    Article  PubMed  Google Scholar 

  41. Yang X, Nielsen CP, Song S, et al. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat Energy, 2022, 7: 955–965

    Article  CAS  Google Scholar 

  42. Wang F, Hou T, Zhao X, et al. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photo-catalytic CO2 reduction. Adv Mater, 2021, 33: 2102690

    Article  CAS  Google Scholar 

  43. Li K, Peng B, Peng T. Recent advances in heterogeneous photo-catalytic CO2 conversion to solar fuels. ACS Catal, 2016, 6: 7485–7527

    Article  CAS  Google Scholar 

  44. Osterloh FE. Photocatalysis versus photosynthesis: A sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett, 2017, 2: 445–453

    Article  CAS  Google Scholar 

  45. Zhou P, Navid IA, Ma Y, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature, 2023, 613: 66–70

    Article  CAS  PubMed  Google Scholar 

  46. Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277: 637–638

    Article  CAS  Google Scholar 

  47. Nordin NA, Mohamed MA, Salehmin MNI, et al. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev, 2022, 468: 214639

    Article  CAS  Google Scholar 

  48. Mao Y, Wang P, Li L, et al. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew Chem Int Ed, 2020, 59: 3685–3690

    Article  CAS  Google Scholar 

  49. Liu S, Wang M, He Y, et al. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev, 2023, 475: 214882

    Article  CAS  Google Scholar 

  50. Sun Z, Wang H, Wu Z, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal Today, 2018, 300: 160–172

    Article  CAS  Google Scholar 

  51. Karamian E, Sharifnia S. On the general mechanism of photocatalytic reduction of CO2. J CO2 Utilization, 2016, 16: 194–203

    Article  CAS  Google Scholar 

  52. Sun Z, Talreja N, Tao H, et al. Catalysis of carbon dioxide photo-reduction on nanosheets: Fundamentals and challenges. Angew Chem Int Ed, 2018, 57: 7610–7627

    Article  CAS  Google Scholar 

  53. Wang Y, Chen E, Tang J. Insight on reaction pathways of photo-catalytic CO2 conversion. ACS Catal, 2022, 12: 7300–7316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White JL, Baruch MF, Pander Iii JE, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem Rev, 2015, 115: 12888–12935

    Article  CAS  PubMed  Google Scholar 

  55. Hong L, Guo R, Zhang Z, et al. Fabrication of porous octahedron-flowerlike microsphere NH2-UiO-66/CdIn2S4 heterojunction photo-catalyst for enhanced photocatalytic CO2 reduction. J CO2 Utilization, 2021, 51: 101650

    Article  CAS  Google Scholar 

  56. Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119: 3962–4179

    Article  CAS  PubMed  Google Scholar 

  57. Gong E, Ali S, Hiragond CB, et al. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci, 2022, 15: 880–937

    Article  CAS  Google Scholar 

  58. Indrakanti VP, Kubicki JD, Schobert HH. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ Sci, 2009, 2: 745–758

    Article  CAS  Google Scholar 

  59. Ji Y, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J Am Chem Soc, 2016, 138: 15896–15902

    Article  CAS  PubMed  Google Scholar 

  60. Franklin EC. The ammono carbonic acids. J Am Chem Soc, 1922, 44: 486–509

    Article  CAS  Google Scholar 

  61. Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed, 2012, 51: 68–89

    Article  CAS  Google Scholar 

  62. Pauling L, Sturdivant JH. The structure of cyameluric acid, hydromelonic acid and related substances. Proc Natl Acad Sci USA, 1937, 23: 615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teter DM, Hemley RJ. Low-compressibility carbon nitrides. Science, 1996, 271: 53–55

    Article  CAS  Google Scholar 

  64. Jiang Z, Zhang X, Chen H, et al. Fusiform-shaped g-C3N4 capsules with superior photocatalytic activity. Small, 2020, 16: 2003910

    Article  CAS  Google Scholar 

  65. Li Y, Xu H, Ouyang S, et al. In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible-light irradiation. J Mater Chem A, 2016, 4: 2943–2950

    Article  CAS  Google Scholar 

  66. Fu J, Zhu B, Jiang C, et al. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small, 2017, 13: 1603938

    Article  Google Scholar 

  67. Ji H, Chang F, Hu X, et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chem Eng J, 2013, 218: 183–190

    Article  CAS  Google Scholar 

  68. Wang K, Fu J, Zheng Y. Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B, K co-doping and enhancement by N vacancies. Appl Catal B-Environ, 2019, 254: 270–282

    Article  CAS  Google Scholar 

  69. Goettmann F, Thomas A, Antonietti M. Metal-free activation of CO2 by mesoporous graphitic carbon nitride. Angew Chem Int Ed, 2007, 46: 2717–2720

    Article  CAS  Google Scholar 

  70. Huang P, Huang J, Pantovich SA, et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J Am Chem Soc, 2018, 140: 16042–16047

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Mao F, Zheng LR, et al. Tuning metal catalyst with metal–C3N4 interaction for efficient CO2 electroreduction. ACS Catal, 2018, 8: 11035–11041

    Article  CAS  Google Scholar 

  72. Zhang G, Zhang J, Zhang M, et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem, 2012, 22: 8083–8091

    Article  CAS  Google Scholar 

  73. Xu Y, Gao SP. Band gap of C3N4 in the GW approximation. Int J Hydrogen Energy, 2012, 37: 11072–11080

    Article  CAS  Google Scholar 

  74. Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal, 2012, 2: 1596–1606

    Article  Google Scholar 

  75. Masih D, Ma Y, Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl Catal B-Environ, 2017, 206: 556–588

    Article  CAS  Google Scholar 

  76. Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 2015, 27: 2150–2176

    Article  CAS  PubMed  Google Scholar 

  77. Mamba G, Mishra AK. Graphitic carbon nitride (g-C3N4) nano-composites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B-Environ, 2016, 198: 347–377

    Article  CAS  Google Scholar 

  78. Zheng Y, Lin L, Wang B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Ed, 2015, 54: 12868–12884

    Article  CAS  Google Scholar 

  79. Patnaik S, Sahoo DP, Parida K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon, 2021, 172: 682–711

    Article  CAS  Google Scholar 

  80. Hasija V, Nguyen VH, Kumar A, et al. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. J Hazard Mater, 2021, 413: 125324

    Article  CAS  PubMed  Google Scholar 

  81. Balakrishnan A, Chinthala M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere, 2022, 297: 134190

    Article  CAS  PubMed  Google Scholar 

  82. Mishra A, Mehta A, Basu S, et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149: 693–721

    Article  CAS  Google Scholar 

  83. Shen H, Peppel T, Strunk J, et al. Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol RRL, 2020, 4: 1900546

    Article  CAS  Google Scholar 

  84. Chang X, Wang T, Gong J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci, 2016, 9: 2177–2196

    Article  CAS  Google Scholar 

  85. Du L, Gao B, Tian Q, et al. Frustrated Lewis Pairs constructed on 2D amorphous carbon nitride for high-selective photocatalytic CO2 reduction to CH4. Sol RRL, 2021, 5: 2100673

    Article  CAS  Google Scholar 

  86. Zhu B, Zhang L, Xu D, et al. Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation. J CO2 Utilization, 2017, 21: 327–335

    Article  CAS  Google Scholar 

  87. Sun Z, Fischer JMTA, Li Q, et al. Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Appl Catal B-Environ, 2017, 216: 146–155

    Article  CAS  Google Scholar 

  88. Azofra LM, MacFarlane DR, Sun C. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion. Phys Chem Chem Phys, 2016, 18: 18507–18514

    Article  CAS  PubMed  Google Scholar 

  89. Yu Y, Yan W, Wang X, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv Mater, 2018, 30: 1705060

    Article  Google Scholar 

  90. Chen P, Lei B, Dong X’, et al. Rare-earth single-atom La–N chargetransfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano, 2020, 14: 15841–15852

    Article  CAS  PubMed  Google Scholar 

  91. Xu Y, Jin X, Ge T, et al. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem Eng J, 2021, 409: 128178

    Article  CAS  Google Scholar 

  92. Ye S, Wang R, Wu MZ, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci, 2015, 358: 15–27

    Article  CAS  Google Scholar 

  93. Kim B, Kwon D, Baeg J, et al. Dual-atom-site Sn-Cu/C3N4 photo-catalyst selectively produces formaldehyde from CO2 reduction. Adv Funct Mater, 2023, 33: 2212453

    Article  CAS  Google Scholar 

  94. Wang K, Li Q, Liu B, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B-Environ, 2015, 176–177: 44–52

    Article  Google Scholar 

  95. Dong G, Zhang L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J Mater Chem, 2012, 22: 1160–1166

    Article  CAS  Google Scholar 

  96. Xia P, Antonietti M, Zhu B, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv Funct Mater, 2019, 29: 1900093

    Article  Google Scholar 

  97. Niu P, Yang Y, Yu JC, et al. Switching the selectivity of the photo-reduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem Commun, 2014, 50: 10837–10840

    Article  CAS  Google Scholar 

  98. Li P, Wang F, Wei S, et al. Mechanistic insights into CO2 reduction on Cu/Mo-loaded two-dimensional g-C3N4 (001). Phys Chem Chem Phys, 2017, 19: 4405–4410

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Pei C, Chang X, et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J Am Chem Soc, 2020, 142: 11540–11549

    Article  CAS  PubMed  Google Scholar 

  100. Ojha N, Bajpai A, Kumar S. Enhanced and selective photocatalytic reduction of CO2 by H2O over strategically doped Fe and Cr into porous boron carbon nitride. Catal Sci Technol, 2020, 10: 2663–2680

    Article  CAS  Google Scholar 

  101. Wang L, Zang L, Shen F, et al. Preparation of Cu modified g-C3N4 nanorod bundles for efficiently photocatalytic CO2 reduction. J Colloid Interface Sci, 2022, 622: 336–346

    Article  CAS  PubMed  Google Scholar 

  102. Fu S, Liu X, Ran J, et al. CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. Appl Surf Sci, 2021, 540: 148293

    Article  CAS  Google Scholar 

  103. Wang Y, Xu Y, Wang Y, et al. Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O. Catal Commun, 2016, 74: 75–79

    Article  CAS  Google Scholar 

  104. Dong X, Zhang S, Wu H, et al. Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2. RSC Adv, 2019, 9: 28894–28901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tang J, Guo R, Pan W, et al. Visible light activated photocatalytic behaviour of Eu(III) modified g-C3N4 for CO2 reduction and H2 evolution. Appl Surf Sci, 2019, 467–468: 206–212

    Article  Google Scholar 

  106. Wang S, Zhan J, Chen K, et al. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain Chem Eng, 2020, 8: 8214–8222

    Article  CAS  Google Scholar 

  107. Jia R, Zhang Y, Yang X. High efficiency photocatalytic CO2 reduction realized by Ca2+ and HDMP group Co-modified graphitic carbon nitride. Int J Hydrogen Energy, 2021, 46: 32893–32903

    Article  CAS  Google Scholar 

  108. Zhang H, Tang Y, Liu Z, et al. Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem Phys Lett, 2020, 751: 137467

    Article  CAS  Google Scholar 

  109. Duan Y, Wang Y, Zhang W, et al. Simultaneous CO2 and H2O activation via integrated Cu single atom and N vacancy dual-site for enhanced CO photo-production. Adv Funct Mater, 2023, 33: 2301729

    Article  CAS  Google Scholar 

  110. Li J, Li K, Du J, et al. Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride. J CO2 Utilization, 2022, 64: 102162

    Article  CAS  Google Scholar 

  111. Liu G, Niu P, Sun C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc, 2010, 132: 11642–11648

    Article  CAS  PubMed  Google Scholar 

  112. Fu J, Liu K, Jiang K, et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv Sci, 2019, 6: 1900796

    Article  CAS  Google Scholar 

  113. Huang X, Gu W, Hu S, et al. Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2. Catal Sci Technol, 2020, 10: 3694–3700

    Article  CAS  Google Scholar 

  114. Guo Y, Wang M, Tian J, et al. Probing the effect of P-doping in polymeric carbon nitride on CO2 photocatalytic reduction. Dalton Trans, 2020, 49: 15750–15757

    Article  CAS  PubMed  Google Scholar 

  115. Xie W, Li K, Liu XH, et al. P-mediated Cu-N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation. Adv Mater, 2023, 35: 2208132

    Article  CAS  Google Scholar 

  116. Qaraah FA, Mahyoub SA, Hezam A, et al. Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/ N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2022, 315: 121585

    Article  CAS  Google Scholar 

  117. Samanta S, Yadav R, Kumar A, et al. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl Catal B-Environ, 2019, 259: 118054

    Article  CAS  Google Scholar 

  118. Ojha N, Bajpai A, Kumar S. Visible light-driven enhanced CO2 reduction by water over Cu modified S-doped g-C3N4. Catal Sci Technol, 2019, 9: 4598–4613

    Article  CAS  Google Scholar 

  119. Wang Y, Tian Y, Yan L, et al. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J Phys Chem C, 2018, 122: 7712–7719

    Article  CAS  Google Scholar 

  120. Kumar A, Yadav RK, Park NJ, et al. Facile one-pot two-step synthesis of novel in situ selenium-doped carbon nitride nanosheet photo-catalysts for highly enhanced solar fuel production from CO2. ACS Appl Nano Mater, 2018, 1: 47–54

    Article  CAS  Google Scholar 

  121. Kumar S, Gawande MB, Kopp J, et al. P- and F-co-doped carbon nitride nanocatalysts for photocatalytic CO2 reduction and thermo-catalytic furanics synthesis from sugars. ChemSusChem, 2020, 13: 5231–5238

    Article  CAS  PubMed  Google Scholar 

  122. Wan S, Ou M, Zhong Q, et al. Haloid acid induced carbon nitride semiconductors for enhanced photocatalytic H2 evolution and reduction of CO2 under visible light. Carbon, 2018, 138: 465–474

    Article  CAS  Google Scholar 

  123. Liu C, Zhang Y, Dong F, et al. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl Catal B-Environ, 2017, 203: 465–474

    Article  CAS  Google Scholar 

  124. Yan P, Ji F, Zhang W, et al. Engineering surface bromination in carbon nitride for efficient CO2 photoconversion to CH4. J Colloid Interface Sci, 2023, 634: 1005–1013

    Article  CAS  PubMed  Google Scholar 

  125. Lan ZA, Zhang G, Wang X. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl Catal B-Environ, 2016, 192: 116–125

    Article  CAS  Google Scholar 

  126. Xia J, Chai L, Tian T, et al. CN/iodine-doped CN homojunction powder catalysts with excellent visible-light photocatalytic properties. Powder Tech, 2020, 373: 488–496

    Article  CAS  Google Scholar 

  127. Arumugam M, Tahir M, Praserthdam P. Effect of nonmetals (B, O, P, and S) doped with porous g-C3N4 for improved electron transfer towards photocatalytic CO2 reduction with water into CH4. Chemosphere, 2022, 286: 131765

    Article  CAS  PubMed  Google Scholar 

  128. Zhang X, Wang L, Du Q, et al. Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation. J Colloid Interface Sci, 2016, 464: 89–95

    Article  CAS  PubMed  Google Scholar 

  129. Xu Y, You Y, Huang H, et al. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J Hazard Mater, 2020, 381: 121159

    Article  CAS  PubMed  Google Scholar 

  130. Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photo-catalytic CO2 reduction. Angew Chem Int Ed, 2018, 57: 13570–13574

    Article  CAS  Google Scholar 

  131. Wang H, Li H, Chen Z, et al. TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance. Solid State Sci, 2020, 100: 106099

    Article  CAS  Google Scholar 

  132. Li M, Zhang L, Wu M, et al. Mesostructured CeO2/g-C3N4 nano-composites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy, 2016, 19: 145–155

    Article  CAS  Google Scholar 

  133. Zhang W, Mohamed AR, Ong W. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew Chem Int Ed, 2020, 59: 22894–22915

    Article  CAS  Google Scholar 

  134. Jiang Z, Wan W, Li H, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater, 2018, 30: 1706108

    Article  Google Scholar 

  135. Wang M, Shen M, Zhang L, et al. 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity. Carbon, 2017, 120: 23–31

    Article  CAS  Google Scholar 

  136. Bhosale R, Jain S, Vinod CP, et al. Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. ACS Appl Mater Interfaces, 2019, 11: 6174–6183

    Article  CAS  PubMed  Google Scholar 

  137. Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  138. Li Y, Xia Z, Yang Q, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Tech, 2022, 125: 128–144

    Article  CAS  Google Scholar 

  139. He F, Zhu B, Cheng B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ, 2020, 272: 119006

    Article  CAS  Google Scholar 

  140. Xie Q, He W, Liu S, et al. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin J Catal, 2020, 41: 140–153

    Article  CAS  Google Scholar 

  141. Zhou J, Gao B, Wu D, et al. Enhanced photocatalytic activity of lead-free Cs2TeBr6/g-C3N4 heterojunction photocatalyst and its mechanism. Adv Funct Mater, 2024, 34: 2308411

    Article  CAS  Google Scholar 

  142. Basyach P, Prajapati PK, Rohman SS, et al. Visible light-active ternary heterojunction photocatalyst for efficient CO2 reduction with simultaneous amine oxidation and sustainable H2O2 production. ACS Appl Mater Interfaces, 2023, 15: 914–931

    Article  CAS  PubMed  Google Scholar 

  143. Madhusudan P, Shi R, Xiang S, et al. Construction of highly efficient Z-scheme ZnxCd1−xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl Catal B-Environ, 2021, 282: 119600

    Article  CAS  Google Scholar 

  144. Chen L, Li H, Li H, et al. Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction. Appl Catal B-Environ, 2022, 318: 121863

    Article  CAS  Google Scholar 

  145. Li HJW, Zhou H, Chen K, et al. Metallic MoO2-modified graphitic carbon nitride boosting photocatalytic CO2 reduction via Schottky junction. Sol RRL, 2020, 4: 1900416

    Article  CAS  Google Scholar 

  146. Khan J, Sun Y, Han L. A comprehensive review on graphitic carbon nitride for carbon dioxide photoreduction. Small Methods, 2022, 6: 2201013

    Article  CAS  Google Scholar 

  147. Wang Q, Fang Z, Zhang W, et al. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv Fiber Mater, 2022, 4: 342–360

    Article  CAS  Google Scholar 

  148. Yu J, Wang K, Xiao W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4Pt nanocomposite photo-catalysts. Phys Chem Chem Phys, 2014, 16: 11492–11501

    Article  CAS  PubMed  Google Scholar 

  149. Ong WJ, Tan LL, Chai SP, et al. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans, 2015, 44: 1249–1257

    Article  CAS  PubMed  Google Scholar 

  150. Li F, Zhou H, Fan J, et al. Amine-functionalized graphitic carbon nitride decorated with small-sized Au nanoparticles for photocatalytic CO2 reduction. J Colloid Interface Sci, 2020, 570: 11–19

    Article  CAS  PubMed  Google Scholar 

  151. Li P, Liu L, An W, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl Catal B-Environ, 2020, 266: 118618

    Article  CAS  Google Scholar 

  152. Heng Q, Wang B, Fan X, et al. Enhanced photoreduction activity of CO2 to CO over Ag-loaded mesoporous g-C3N4 (MCN) by promoting charge separation and CO2 adsorption. J Alloys Compd, 2022, 920: 165945

    Article  CAS  Google Scholar 

  153. Khan I, Chu X, Khan I, et al. Synthesis of nanosized Ag-modified 2D/2D hydroxylated g-C3N4/TS-1 Z-scheme nanocomposites for efficient photocatalytic CO2 reduction. Mater Res Bull, 2020, 130: 110926

    Article  CAS  Google Scholar 

  154. Cao S, Li Y, Zhu B, et al. Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal, 2017, 349: 208–217

    Article  CAS  Google Scholar 

  155. Lang Q, Hu W, Zhou P, et al. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction. Nanotechnology, 2017, 28: 484003

    Article  PubMed  Google Scholar 

  156. Wang Z, Lee H, Chen J, et al. Synergistic effects of Pd–Ag bimetals and g-C3N4 photocatalysts for selective and efficient conversion of gaseous CO2. J Power Sources, 2020, 466: 228306

    Article  CAS  Google Scholar 

  157. Tian N, Xiao K, Zhang Y, et al. Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Appl Catal B-Environ, 2019, 253: 196–205

    Article  CAS  Google Scholar 

  158. Yang B, Zhao J, Yang W, et al. A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction. J Colloid Interface Sci, 2021, 589: 179–186

    Article  CAS  PubMed  Google Scholar 

  159. Li X, Li S, Xu J, et al. Synergy of nitrogen vacancies and nanodiamond decoration in g-C3N4 for boosting CO2 photoreduction. Appl Surf Sci, 2022, 600: 154199

    Article  CAS  Google Scholar 

  160. Wang H, Liu G, Hao X, et al. Rich -NH2 mesoporous g-C3 N4 nanosheets efficient for cycloaddition of CO2 to epoxides without solvent and co-catalyst. ChemistrySelect, 2021, 6: 3712–3721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China as a Key Technology Research and Development Program Project (2023YFC3709001), the Ministry of Education of China as a Discipline Innovation and Intelligence Introduction Project (B17025), and Tianjin Science and Technology Bureau as a Key Science and Technology Supporting Project (S19ZC60133).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhou Q supervised the project and conceived the idea. Zhan H wrote the draft. Zhou R, Liu K, Ma Z, Wang P, and Zhan S revised the manuscript and provided constructive suggestions. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Qixing Zhou  (周启星).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Haiyin Zhan is a PhD candidate at the College of Environmental Science and Engineering, Nankai University (China) under the supervision of professor Qixing Zhou. His current research area is the construction of highly-efficient atomic catalysts for Fenton-like reactions.

Qixing Zhou is a distinguished professor of Nankai University (China) and serves at the College of Environmental Science and Engineering. He received his PhD degree in ecology from the Chinese Academy of Sciences and Karlsruhe University (Germany) in 1992. His research interests focus on ecological geochemistry, green advanced materials, and environmental remediation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Zhou, R., Liu, K. et al. Progress and challenges of photocatalytic reduction of CO2 with g-C3N4-based photocatalysts in the context of carbon neutrality. Sci. China Mater. 67, 1740–1764 (2024). https://doi.org/10.1007/s40843-024-2900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2900-5

Keywords

Navigation