Skip to main content
Log in

A critical review of operating stability issues in electrochemical CO2 reduction

电催化CO2还原稳定性问题和挑战: 评论性综述

  • Reviews
  • Special Topic: Advanced Energy Catalytic Materials
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrocatalytic carbon dioxide reduction reaction (CO2RR) offers a promising solution for mitigating environmental challenges by converting CO2 into value-added chemicals and fuels. However, the long-term stability of CO2RR systems remains a major bottleneck impeding large-scale commercial implementation. This review summarizes recent progress on elucidating the root causes underlying stability declines in CO2RR and strategies to address them. First, catalysts undergo structural transformations (e.g., reconstruction, aggregation, dissolution) under applied reduction potentials, decreasing the density of active sites. Catalyst poisoning via carbon deposition or feed impurities (e.g., SO2) also reduces site availability. Second, gas diffusion layer (GDL) flooding and salt precipitation hinder reactant/product transport and destroy catalyst-electrolyte-gas three-phase interfaces. High applied pressures induce GDL cracking over prolonged operation. Third, alkaline electrolytes neutralize with CO2 and precipitate carbonate salts, while acidic media corrode catalysts and favor competing hydrogen evolution reaction. Metal ion impurities deposit on catalyst surfaces further exacerbating decays. Rational catalyst and GDL design can construct stabilized microenvironments, though additional advances in materials properties, operating conditions, and impurity removal are essential to extend CO2RR lifetime for commercial needs (>50,000 h). Understanding cross-coupling between the diverse deteriorative phenomena will advance the development of this important frontier.

摘要

电催化二氧化碳还原反应(CO2RR)能够利用可再生电能将CO2转化为高附加值化学品和燃料, 是一项有望缓解当下环境挑战的技术方案. 本文总结了CO2RR稳定性下降的根本原因, 并探讨了解决这一问题的有效策略以及最新的研究进展. 首先, 在外加电位的作用下, 催化剂会发生结构转变, 且碳沉积或气体杂质引起的催化剂中毒都会降低CO2RR的稳定性. 其次, 气体扩散层(GDL)附近发生水淹和盐沉淀会阻碍反应物/生成物的传输, 三相界面会受到破坏. 在长时间服役时, 液压和电流的作用会导致GDL开裂. 在电解质方面, 碱性电解质会与CO2中和, 形成碳酸盐沉淀; 而酸性介质腐蚀催化剂, 并伴随严重的析氢副反应. 另外, 电解质中的金属离子杂质的优先还原进一步加剧了稳定性的衰减. 深入理解CO2RR中各类失活现象对设计稳定、高效的CO2电催化系统具有指导意义. 针对CO2RR稳定性研究目前所面临的困境, 本文最后展望了该领域未来的研究方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao FY, Bao RC, Gao MR, et al. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers. J Mater Chem A, 2020, 8: 15458–15478

    Article  CAS  Google Scholar 

  2. Li L, Ozden A, Guo S, et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat Commun, 2021, 12: 5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu ZZ, Zhang XL, Niu ZZ, et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J Am Chem Soc, 2022, 144: 259–269

    Article  CAS  PubMed  Google Scholar 

  4. Wang P, Yang H, Tang C, et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling. Nat Commun, 2022, 13: 3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Ou P, Ozden A, et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat Energy, 2022, 7: 170–176

    Article  Google Scholar 

  6. Kim D, Kley CS, Li Y, et al. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA, 2017, 114: 10560–10565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai T, Sun H, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373: 1523–1527

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Li Y, Zhao X, et al. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J Am Chem Soc, 2023, 145: 6339–6348

    Article  CAS  PubMed  Google Scholar 

  9. Wen CF, Zhou M, Liu PF, et al. Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu–S motifs in metal-organic framework based precatalysts. Angew Chem Int Ed, 2022, 61: e202111700

    Article  CAS  Google Scholar 

  10. Zhao Y, Zu X, Chen R, et al. Industrial-current-density CO2-to-C2+ electroreduction by anti-swelling anion-exchange ionomer-modified oxide-derived Cu nanosheets. J Am Chem Soc, 2022, 144: 10446–10454

    Article  CAS  PubMed  Google Scholar 

  11. Xi D, Li J, Low J, et al. Limiting the uncoordinated N species in M–Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv Mater, 2022, 34: 2104090

    Article  CAS  Google Scholar 

  12. Nam DH, Shekhah O, Lee G, et al. Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction. J Am Chem Soc, 2020, 142: 21513–21521

    Article  CAS  PubMed  Google Scholar 

  13. Stephens IEL, Chan K, Bagger A, et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J Phys Energy, 2022, 4: 042003

    Article  CAS  Google Scholar 

  14. Martin AJ, Mitchell S, Mondelli C, et al. Unifying views on catalyst deactivation. Nat Catal, 2022, 5: 854–866

    Article  Google Scholar 

  15. Popović S, Smiljanić M, Jovanovič P, et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew Chem Int Ed, 2020, 59: 14736–14746

    Article  Google Scholar 

  16. Lei Q, Huang L, Yin J, et al. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat Commun, 2022, 13: 4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yanson AI, Rodriguez P, Garcia-Araez N, et al. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed, 2011, 50: 6346–6350

    Article  CAS  Google Scholar 

  18. Osowiecki WT, Nussbaum JJ, Kamat GA, et al. Factors and dynamics of Cu nanocrystal reconstruction under CO2 reduction. ACS Appl Energy Mater, 2019, 2: 7744–7749

    Article  CAS  Google Scholar 

  19. Liu F, Ren X, Zhao J, et al. Inhibiting sulfur dissolution and enhancing activity of SnS for CO2 electroreduction via electronic state modulation. ACS Catal, 2022, 12: 13533–13541

    Article  CAS  Google Scholar 

  20. De Luna P, Quintero-Bermudez R, Dinh CT, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal, 2018, 1: 103–110

    Article  CAS  Google Scholar 

  21. Zhong D, Zhao ZJ, Zhao Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew Chem Int Ed, 2021, 60: 4879–4885

    Article  CAS  Google Scholar 

  22. Peng H, Tang MT, Liu X, et al. The role of atomic carbon in directing electrochemical CO(2) reduction to multicarbon products. Energy Environ Sci, 2021, 14: 473–482

    Article  CAS  Google Scholar 

  23. Xiang K, Zhu F, Liu Y, et al. A strategy to eliminate carbon deposition on a copper electrode in order to enhance its stability in CO2RR catalysis by introducing crystal defects. Electrochem Commun, 2019, 102: 72–77

    Article  CAS  Google Scholar 

  24. Luc W, Ko BH, Kattel S, et al. SO2-induced selectivity change in CO2 electroreduction. J Am Chem Soc, 2019, 141: 9902–9909

    Article  CAS  PubMed  Google Scholar 

  25. Legrand U, Apfel UP, Boffito DC, et al. The effect of flue gas contaminants on the CO2 electroreduction to formic acid. J CO2 Util, 2020, 42: 101315

    Article  CAS  Google Scholar 

  26. Skafte TL, Blennow P, Hjelm J, et al. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes. J Power Sources, 2018, 373: 54–60

    Article  CAS  Google Scholar 

  27. Ma Y, Meng X, Li K, et al. Scrutinizing synergy and active site of nitrogen and selenium dual-doped porous carbon for efficient triiodide reduction. ACS Catal, 2023, 13: 1290–1298

    Article  CAS  Google Scholar 

  28. Du Y, Meng X, Wang Z, et al. Graphene-based catalysts for CO2 electroreduction. Acta Physico Chim Sin, 2021, 0: 2101009–0

    Article  Google Scholar 

  29. Meng X, Yu C, Song X, et al. Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells. Angew Chem Int Ed, 2018, 57: 4682–4686

    Article  CAS  Google Scholar 

  30. Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy, 2022, 7: 130–143

    Article  CAS  Google Scholar 

  31. Nguyen TN, Dinh CT. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem Soc Rev, 2020, 49: 7488–7504

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Chen J, Mosali VSS, et al. Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2. Angew Chem Int Ed, 2022, 61: e202208534

    Article  CAS  Google Scholar 

  33. Shi R, Guo J, Zhang X, et al. Efficient wettability-controlled electro-reduction of CO2 to CO at Au/C interfaces. Nat Commun, 2020, 11: 3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gabardo CM, O’Brien CP, Edwards JP, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule, 2019, 3: 2777–2791

    Article  CAS  Google Scholar 

  35. Monteiro MCO, Koper MTM. Measuring local pH in electrochemistry. Curr Opin Electrochem, 2021, 25: 100649

    Article  CAS  Google Scholar 

  36. Nguyen TN, Chen Z, Zeraati AS, et al. Catalyst regeneration via chemical oxidation enables long-term electrochemical carbon dioxide reduction. J Am Chem Soc, 2022, 144: 13254–13265

    Article  CAS  PubMed  Google Scholar 

  37. Kong Y, Liu M, Hu H, et al. Cracks as efficient tools to mitigate flooding in gas diffusion electrodes used for the electrochemical reduction of carbon dioxide. Small Methods, 2022, 6: 2200369

    Article  CAS  Google Scholar 

  38. Yang PP, Gao MR. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem Soc Rev, 2023, 52: 4343–4380

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Yang T, Kataoka S, et al. Specific ion effects on interfacial water structure near macromolecules. J Am Chem Soc, 2007, 129: 12272–12279

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Liu T, Wei P, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper Iodide catalyst. Angew Chem Int Ed, 2021, 60: 14329–14333

    Article  CAS  Google Scholar 

  41. Kastlunger G, Wang L, Govindarajan N, et al. Using pH dependence to understand mechanisms in electrochemical CO reduction. ACS Catal, 2022, 12: 4344–4357

    Article  CAS  Google Scholar 

  42. Zhao Y, Hao L, Ozden A, et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat Synth, 2023, 2: 403–412

    Article  Google Scholar 

  43. Shen H, Jin H, Li H, et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat Commun, 2023, 14: 2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao Q, Liu DX, Zhong HX, et al. Electrocatalytic CO2 reduction in acidic medium. Chem Catal, 2023, 3: 100542

    Article  CAS  Google Scholar 

  45. Schuhle P, Schmidt M, Schill L, et al. Influence of gas impurities on the hydrogenation of CO2 to methanol using indium-based catalysts. Catal Sci Technol, 2020, 10: 7309–7322

    Article  Google Scholar 

  46. Gunathunge CM, Li X, Li J, et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J Phys Chem C, 2017, 121: 12337–12344

    Article  CAS  Google Scholar 

  47. Li F, Medvedeva XV, Medvedev JJ, et al. Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat Catal, 2021, 4: 479–487

    Article  CAS  Google Scholar 

  48. Jeong S, Choi MH, Jagdale GS, et al. Unraveling the structural sensitivity of CO2 electroreduction at facet-defined nanocrystals via correlative single-entity and macroelectrode measurements. J Am Chem Soc, 2022, 144: 12673–12680

    Article  CAS  PubMed  Google Scholar 

  49. Lei Q, Zhu H, Song K, et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J Am Chem Soc, 2020, 142: 4213–4222

    Article  CAS  PubMed  Google Scholar 

  50. Ren S, Lees EW, Hunt C, et al. Catalyst aggregation matters for immobilized molecular CO2RR electrocatalysts. J Am Chem Soc, 2023, 145: 4414–4420

    Article  CAS  PubMed  Google Scholar 

  51. Meng X, Liu X, Fan X, et al. Single-atom catalyst aggregates: Size-matching is critical to electrocatalytic performance in sulfur cathodes. Adv Sci, 2022, 9: 2103773

    Article  CAS  Google Scholar 

  52. Velasco-Vélez JJ, Jones T, Gao D, et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons. ACS Sustain Chem Eng, 2019, 7: 1485–1492

    Article  Google Scholar 

  53. Velasco-Vélez JJ, Chuang CH, Gao D, et al. On the activity/selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO2. ACS Catal, 2020, 10: 11510–11518

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang KD, Ko WR, Lee JH, et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew Chem Int Ed, 2017, 56: 796–800

    Article  CAS  Google Scholar 

  55. Pang Y, Li J, Wang Z, et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat Catal, 2019, 2: 251–258

    Article  CAS  Google Scholar 

  56. Eren B, Weatherup RS, Liakakos N, et al. Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures. J Am Chem Soc, 2016, 138: 8207–8211

    Article  CAS  PubMed  Google Scholar 

  57. Wu ZZ, Zhang XL, Yang PP, et al. Gerhardtite as a precursor to an efficient CO-to-acetate electroreduction catalyst. J Am Chem Soc, 2023, 145: 24338–24348

    Article  CAS  PubMed  Google Scholar 

  58. Gao FY, Hu SJ, Zhang XL, et al. High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction. Angew Chem Int Ed, 2020, 59: 8706–8712

    Article  CAS  Google Scholar 

  59. Mariano RG, Kang M, Wahab OJ, et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat Mater, 2021, 20: 1000–1006

    Article  CAS  PubMed  Google Scholar 

  60. Moller T, Scholten F, Thanh TN, et al. Electrocatalytic CO2 reduction on CuOx nanocubes: Tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew Chem Int Ed, 2020, 59: 17974–17983

    Article  Google Scholar 

  61. Peng J, Chen B, Wang Z, et al. Surface coordination layer passivates oxidation of copper. Nature, 2020, 586: 390–394

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Lan J, Xie F, et al. Aligned InS nanorods for efficient electrocatalytic carbon dioxide reduction. ACS Appl Mater Interfaces, 2022, 14: 25257–25266

    Article  CAS  PubMed  Google Scholar 

  63. Gao FY, Wu ZZ, Gao MR. Electrochemical CO2 reduction on transition-metal chalcogenide catalysts: Recent advances and future perspectives. Energy Fuels, 2021, 35: 12869–12883

    Article  CAS  Google Scholar 

  64. Chi LP, Niu ZZ, Zhang XL, et al. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat Commun, 2021, 12: 5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang J, Hörmann N, Oveisi E, et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat Commun, 2018, 9: 3117

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grosse P, Gao D, Scholten F, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew Chem Int Ed, 2018, 57: 6192–6197

    Article  CAS  Google Scholar 

  67. Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581: 178–183

    Article  CAS  PubMed  Google Scholar 

  68. Ma J, Wu D, Feng Y, et al. Physical mixing of piezo-electrocatalysts and graphene oxide to promote CO2 conversion. Nano Energy, 2023, 115: 108719

    Article  CAS  Google Scholar 

  69. Qiao H, Saray MT, Wang X, et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano, 2021, 15: 14928–14937

    Article  CAS  PubMed  Google Scholar 

  70. Weng Z, Zhang X, Wu Y, et al. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew Chem Int Ed, 2017, 56: 13135–13139

    Article  CAS  Google Scholar 

  71. Moradzaman M, Mul G. In situ Raman study of potential-dependent surface adsorbed carbonate, CO, OH, and C species on Cu electrodes during electrochemical reduction of CO2. ChemElectroChem, 2021, 8: 1478–1485

    Article  CAS  Google Scholar 

  72. Zhai Y, Chiachiarelli L, Sridhar N. Effect of gaseous impurities on the electrochemical reduction of CO2 on copper electrodes. ECS Trans, 2009, 19: 1–13

    Article  CAS  Google Scholar 

  73. Birdja YY, Pérez-Gallent E, Figueiredo MC, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4: 732–745

    Article  CAS  Google Scholar 

  74. Nie X, Luo W, Janik MJ, et al. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal, 2014, 312: 108–122

    Article  CAS  Google Scholar 

  75. Duanmu JW, Wu ZZ, Gao FY, et al. Investigation and mitigation of carbon deposition over copper catalyst during electrochemical CO2 reduction. Precis Chem, 2024, 2: 151–160

    Article  CAS  Google Scholar 

  76. Hauch A, Traulsen ML, Küngas R, et al. CO2 electrolysis–Gas impurities and electrode overpotential causing detrimental carbon deposition. J Power Sources, 2021, 506: 230108

    Article  CAS  Google Scholar 

  77. Liu S, Yang C, Zha S, et al. Moderate surface segregation promotes selective ethanol production in CO2 hydrogenation reaction over CoCu catalysts. Angew Chem Int Ed, 2022, 61: 230108

    Google Scholar 

  78. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577: 509–513

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Luo W, Zuttel A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J Catal, 2020, 385: 140–145

    Article  CAS  Google Scholar 

  80. Chen Q, Wang X, Zhou Y, et al. Electrocatalytic CO2 reduction to C2+ products in flow cells. Adv Mater, 2024, 36: 2303902

    Article  CAS  Google Scholar 

  81. Clark EL, Resasco J, Landers A, et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal, 2018, 8: 6560–6570

    Article  CAS  Google Scholar 

  82. Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci, 2019, 12: 1442–1453

    Article  CAS  Google Scholar 

  83. García de Arquer FP, Dinh CT, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science, 2020, 367: 661–666

    Article  PubMed  Google Scholar 

  84. Xing Z, Hu L, Ripatti DS, et al. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat Commun, 2021, 12: 136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater, 2019, 18: 1222–1227

    Article  CAS  PubMed  Google Scholar 

  86. Li J, Chen G, Zhu Y, et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat Catal, 2018, 1: 592–600

    Article  CAS  Google Scholar 

  87. Bienen F, Paulisch MC, Mager T, et al. Investigating the electrowetting of silver-based gas-diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods. Electrochem Sci Adv, 2022, 3: e2100158

    Article  Google Scholar 

  88. Leonard MLE, Clarke LE, Forner-Cuenca A, et al. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem, 2019, 13: 400–411

    Article  PubMed  Google Scholar 

  89. Cao Y, Chen Z, Li P, et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat Commun, 2023, 14: 2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nam DH, Shekhah O, Ozden A, et al. High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability. Adv Mater, 2022, 34: 2207088

    Article  CAS  Google Scholar 

  91. Gao FY, Liu SN, Ge JC, et al. Nickel-molybdenum-niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells. Nat Catal, 2022, 5: 993–1005

    Article  CAS  Google Scholar 

  92. Wang Z, Yang Y, Zhao Z, et al. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat Commun, 2021, 12: 1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu Y, Charlesworth L, Maglaya I, et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett, 2022, 7: 2884–2892

    Article  CAS  Google Scholar 

  94. Yang K, Kas R, Smith WA, et al. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett, 2020, 6: 33–40

    Article  Google Scholar 

  95. Barrio J, Pedersen A, Favero S, et al. Bioinspired and bioderived aqueous electrocatalysis. Chem Rev, 2023, 123: 2311–2348

    Article  CAS  PubMed  Google Scholar 

  96. DuanMu JW, Gao MR. Advances in bio-inspired electrocatalysts for clean energy future. Nano Res, 2024, 17: 515–533

    Article  Google Scholar 

  97. Niu ZZ, Gao FY, Zhang XL, et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J Am Chem Soc, 2021, 143: 8011–8021

    Article  CAS  PubMed  Google Scholar 

  98. Li J, Shang B, Gao Y, et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat Synth, 2023, 2: 1194–1201

    Article  Google Scholar 

  99. Han Z, Han D, Chen Z, et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat Commun, 2022, 13: 3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sassenburg M, Kelly M, Subramanian S, et al. Zero-gap electrochemical CO2 reduction cells: Challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett, 2022, 8: 321–331

    Article  PubMed  PubMed Central  Google Scholar 

  101. Subramanian S, Yang K, Li M, et al. Geometric catalyst utilization in zero-gap CO2 electrolyzers. ACS Energy Lett, 2022, 8: 222–229

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xiao L, Bian M, Zhu L, et al. High-density and low-density gas diffusion layers for proton exchange membrane fuel cells: Comparison of mechanical and transport properties. Int J Hydrogen Energy, 2022, 47: 22532–22544

    Article  CAS  Google Scholar 

  103. Liu H, Wang C, Gao Q, et al. Fabrication of novel core-shell hybrid alginate hydrogel beads. Int J Pharm, 2008, 351: 104–112

    Article  CAS  PubMed  Google Scholar 

  104. Liu J, Li P, Bi J, et al. Design and preparation of electrocatalysts by electrodeposition for CO2 reduction. Chem Eur J, 2022, 28: e202200242

    Article  CAS  PubMed  Google Scholar 

  105. Zhang L, Wei Z, Thanneeru S, et al. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew Chem Int Ed, 2019, 58: 15834–15840

    Article  CAS  Google Scholar 

  106. Nam DH, De Luna P, Rosas-Hernandez A, et al. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater, 2020, 19: 266–276

    Article  CAS  PubMed  Google Scholar 

  107. Bi J, Li P, Liu J, et al. Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols. Nat Commun, 2023, 14: 2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baricuatro JH, Kwon S, Kim YG, et al. Operando electrochemical spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of grand canonical potential predictions. ACS Catal, 2021, 11: 3173–3181

    Article  CAS  Google Scholar 

  109. Marcandalli G, Goyal A, Koper MTM. Electrolyte effects on the Faradaic efficiency of CO2 reduction to CO on a gold electrode. ACS Catal, 2021, 11: 4936–4945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Monteiro MCO, Dattila F, Hagedoorn B, et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat Catal, 2021, 4: 654–662

    Article  CAS  Google Scholar 

  111. Chen C, Li Y, Yang P. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule, 2021, 5: 737–742

    Article  Google Scholar 

  112. Ma M, Zheng Z, Yan W, et al. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett, 2022, 7: 2595–2601

    Article  CAS  Google Scholar 

  113. Zhang L, Feng J, Liu S, et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction. Adv Mater, 2023, 35: 2209590

    Article  CAS  Google Scholar 

  114. Xu K, Li J, Liu F, et al. Favoring CO intermediate stabilization and protonation by crown ether for CO2 electromethanation in acidic media. Angew Chem Int Ed, 2023, 62: e202311968

    Article  CAS  Google Scholar 

  115. Ling N, Zhang J, Wang M, et al. Acidic media impedes tandem catalysis reaction pathways in electrochemical CO2 reduction. Angew Chem Int Ed, 2023, 62: e202308782

    Article  CAS  Google Scholar 

  116. Ovalle VJ, Hsu YS, Agrawal N, et al. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat Catal, 2022, 5: 624–632

    Article  CAS  Google Scholar 

  117. Gu J, Liu S, Ni W, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal, 2022, 5: 268–276

    Article  CAS  Google Scholar 

  118. Hori Y, Konishi H, Futamura T, et al. “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim Acta, 2005, 50: 5354–5369

    Article  CAS  Google Scholar 

  119. Welch AJ, Fenwick AQ, Böhme A, et al. Operando local pH measurement within gas diffusion electrodes performing electrochemical carbon dioxide reduction. J Phys Chem C, 2021, 125: 20896–20904

    Article  CAS  Google Scholar 

  120. Zhang T, Bui JC, Li Z, et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat Catal, 2022, 5: 202–211

    Article  CAS  Google Scholar 

  121. Dinh CT, Burdyny T, Kibria MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360: 783–787

    Article  CAS  PubMed  Google Scholar 

  122. Li L, Liu Z, Yu X, et al. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew Chem Int Ed, 2023, 62: e202300226

    Article  CAS  Google Scholar 

  123. Xie Y, Ou P, Wang X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal, 2022, 5: 564–570

    Article  CAS  Google Scholar 

  124. Ma Z, Yang Z, Lai W, et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat Commun, 2022, 13: 7596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fan Q, Bao GX, Chen X, et al. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering. ACS Catal, 2022, 12: 7517–7523

    Article  CAS  Google Scholar 

  126. Chi LP, Niu ZZ, Zhang YC, et al. Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design. Proc Natl Acad Sci USA, 2023, 120: e2312876120

    Article  CAS  PubMed  Google Scholar 

  127. Kas R, Kortlever R, Yilmaz H, et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem, 2015, 2: 354–358

    Article  CAS  Google Scholar 

  128. Wuttig A, Surendranath Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal, 2015, 5: 4479–4484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2018YFA0702001), the National Natural Science Foundation of China (22225901, 21975237 and 51702312), the Fundamental Research Funds for the Central Universities (WK2340000101), the University of Science and Technology of China Research Funds of the Double First-Class Initiative (YD2340002007 and YD9990002017), the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2022007), the China Postdoctoral Science Foundation (2023M733371, 2022M723032, and 2023T160617), the Natural Science Foundation Youth Project of Anhui Province (2308085QB37), and the China National Postdoctoral Program for Innovative Talents (BX2023341).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions DuanMu JW collected the material references and wrote the review. Gao FY collected the materials of figures. Gao MR directed and revised the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Min-Rui Gao  (高敏锐).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jing-Wen DuanMu received her BSc degree in materials chemistry from the University of Science and Technology of China in 2021. She joined in Prof. Min-Rui Gao’s laboratory in 2021, focusing on the design and synthesis of nanomaterials and their stability. She is currently a master’s student at the University of Science and Technology of China. Her main research interests are carbon dioxide electroreduction reaction mechanism and catalyst design.

Min-Rui Gao received his PhD degree from the University of Science and Technology of China, under the supervision of Prof. Shu-Hong Yu in 2012. He then did postdoctoral research at the University of Delaware and Argonne National Laboratory (USA) in 2012–2015. After that, he worked in the Department of Colloid Chemistry, directed by Prof. Markus Antonietti, in the Max Plank Institute of Colloids and Interfaces in Potsdam (Germany) in 2015–2016. He is currently a full professor at the University of Science and Technology of China. His research interest involves the development of nanostructured materials and their applications in energy fields.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuanMu, JW., Gao, FY. & Gao, MR. A critical review of operating stability issues in electrochemical CO2 reduction. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-024-2835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-024-2835-3

Keywords

Navigation