Skip to main content
Log in

2D/2D g-C3N4@BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction

具有气-液-固三相界面的二维/二维石墨相氮化碳@碘氧铋S型异质结高效光催化二氧化碳还原

  • Articles
  • Special Topic: Advanced Energy Catalytic Materials
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Over the past decades, there has been considerable research attention dedicated to the conversion of CO2 into valuable chemical fuels such as CH4, CO, and CH3OH through CO2 photoreduction. Despite these efforts, the efficiency of current CO2 photoreduction systems remains unsatisfactory, primarily due to the rapid recombination of photoinduced charges and inadequate co-adsorption of CO2 and H2O molecules. Herein, we present a novel and highly efficient CO2 photoreduction system based on an intimate 2D/2D g-C3N4@BiOI step-scheme (S-scheme) heterojunction constructed on hydrophobic carbon fiber paper. The resulting heterojunction demonstrates outstanding photocatalytic ability for CO2 reduction, achieving high CO selectivity (77.8%) and activity (458.0 µmol h−1 m−2 for CO). The remarkable photocatalytic performance can be attributed to the well-designed S-scheme heterojunction, which enhances charge separation efficiency, and the establishment of a gasliquid-solid triphase interface, ensuring the simultaneous and sufficient supply of CO2 and H2O. This work introduces new perspectives for the design of highly efficient photocatalytic CO2 reduction systems.

摘要

在过去几十年中, 将二氧化碳光还原转化为有用的化学燃料(甲 烷、一氧化碳和甲醇等)受到了极大的关注. 然而, 由于光生电荷的复 合速度快, 二氧化碳和水分子的共吸附不足, 目前的二氧化碳光还原系 统的效率还远远不能令人满意. 本文报道了在疏水碳纤维纸上构建一 个紧密的二维/二维石墨相氮化碳@碘氧铋梯型(S型)异质结, 用于高效 的二氧化碳光还原. 所制备的异质结具有良好的一氧化碳选择性 (77.8%)和活性(458.0 µmol h−1 m−2). 良好的光催化性能归因于良好设 计的S型异质结结构, 提高了电荷分离效率, 以及形成了气-液-固三相 界面, 充分保证了二氧化碳和水的同时供给. 这项工作为高效光催化二 氧化碳还原系统的设计提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou Y, Wang Z, Huang L, et al. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv Energy Mater, 2021, 11: 2003159

    Article  CAS  Google Scholar 

  2. Guo RT, Wang J, Bi ZX, et al. Recent advances and perspectives of core-shell nanostructured materials for photocatalytic CO2 reduction. Small, 2023, 19: 2206314

    Article  CAS  Google Scholar 

  3. Chen X, Chen Y, Liu X, et al. Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions. Sci China Mater, 2022, 65: 400–412

    Article  CAS  Google Scholar 

  4. Ding Y, Maitra S, Wang C, et al. Vacancy defect engineering in semiconductors for solar light-driven environmental remediation and sustainable energy production. Interdiscip Mater, 2022, 1: 213–255

    Article  CAS  Google Scholar 

  5. Su B, Zheng M, Lin W, et al. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater, 2023, 13: 2203290

    Article  CAS  Google Scholar 

  6. Su B, Huang H, Ding Z, et al. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 124: 164–170

    Article  CAS  Google Scholar 

  7. Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119: 3962–4179

    Article  CAS  PubMed  Google Scholar 

  8. Pei L, Li T, Yuan Y, et al. Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem Commun, 2019, 55: 11754–11757

    Article  CAS  Google Scholar 

  9. Yang C, Hou Y, Luo G, et al. Alkyl group-decorated g-C3N4 for enhanced gas-phase CO2 photoreduction. Nanoscale, 2022, 14: 11972–11978

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Xia Y, Cao S. “Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chin J Catal, 2021, 42: 1667–1676

    Article  CAS  Google Scholar 

  11. Bai S, Qiu H, Song M, et al. Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. eScience, 2022, 2: 428–437

    Article  Google Scholar 

  12. Chen L, Feng X. Enhanced catalytic reaction at an air–liquid–solid triphase interface. Chem Sci, 2020, 11: 3124–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu H, Xuan Y, Zhu Q, et al. Highly efficient and stable photocatalytic CO2 and H2O reduction into methanol at lower temperatures through an elaborate gas-liquid-solid interfacial system. Green Chem, 2023, 25: 596–605

    Article  CAS  Google Scholar 

  14. Huang H, Shi R, Li Z, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary. Angew Chem Int Ed, 2022, 61: e202200802

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  16. Li H, Tao S, Wan S, et al. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production. Chin J Catal, 2023, 46: 167–176

    Article  CAS  Google Scholar 

  17. Chen G, Zhou Z, Li B, et al. S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. J Environ Sci, 2024, 140: 103–112

    Article  Google Scholar 

  18. Cai X, Zang Y, Zang S, et al. Binary pyrene-benzene polymer/Znln2S4 S-scheme photocatalyst for enhanced hydrogen evolution and antibiotics degradation. Appl Surf Sci, 2023, 637: 157871

    Article  CAS  Google Scholar 

  19. Hou J, Jiang T, Wang X, et al. Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties. J Cleaner Prod, 2021, 287: 125072

    Article  CAS  Google Scholar 

  20. Wu Z, Jing J, Zhang K, et al. Epitaxial BiP5O14 layer on BiOI nanosheets enhancing the photocatalytic degradation of phenol via interfacial internal-electric-field. Appl Catal B-Environ, 2022, 307: 121153

    Article  CAS  Google Scholar 

  21. Mo Z, Di J, Yan P, et al. An all-organic D-A system for visible-light-driven overall water splitting. Small, 2020, 16: 2003914

    Article  CAS  Google Scholar 

  22. Wang ZL, Liu RL, Zhang JF, et al. S-scheme porous g-C3N4/Ag2MoO4 heterojunction composite for CO2 photoreduction. Chin J Struct Chem, 2022, 41: 2206015–2206022

    CAS  Google Scholar 

  23. Yang C, Wang Y, Yu J, et al. Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction. ACS Appl Energy Mater, 2021, 4: 8734–8738

    Article  CAS  Google Scholar 

  24. Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl Catal B-Environ, 2020, 268: 118738

    Article  CAS  Google Scholar 

  25. Jiang Y, Wang Y, Zhang Z, et al. 2D/2D CsPbBr3/BiOCl heterojunction with an S-scheme charge transfer for boosting the photocatalytic conversion of CO2. Inorg Chem, 2022, 61: 10557–10566

    Article  CAS  PubMed  Google Scholar 

  26. Law KY. Definitions for hydrophilicity, hydrophobicity, and super-hydrophobicity: Getting the basics right. J Phys Chem Lett, 2014, 5: 686–688

    Article  CAS  PubMed  Google Scholar 

  27. Zhao D, Dang C, Xuan Y, et al. Hydrophobic Ni@N-doped TiO2 nanosheet arrays-carbon paper photocatalyst for CO2 photoreduction at tri-phase interfaces. Adv Sustain Syst, 2023, 7: 2200450

    Article  CAS  Google Scholar 

  28. Lv H, Sa R, Li P, et al. Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Sci China Chem, 2020, 63: 1289–1294

    Article  CAS  Google Scholar 

  29. Xia P, Zhu B, Yu J, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A, 2017, 5: 3230–3238

    Article  CAS  Google Scholar 

  30. Kamal Hussien M, Sabbah A, Qorbani M, et al. Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chem Eng J, 2022, 430: 132853

    Article  CAS  Google Scholar 

  31. Zhu Z, Li X, Qu Y, et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res, 2021, 14: 81–90

    Article  CAS  Google Scholar 

  32. Yang C, Wan S, Zhu B, et al. Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water. Angew Chem Int Ed, 2022, 61: e202208438

    Article  CAS  Google Scholar 

  33. Wang J, Song Y, Hu J, et al. Photocatalytic hydrogen evolution on P-type tetragonal zircon BWO4. Appl Catal B-Environ, 2019, 251: 94–101

    Article  CAS  Google Scholar 

  34. Xu Q, Wageh S, Al-Ghamdi AA, et al. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2022, 124: 171–173

    Article  Google Scholar 

  35. Xia Y, Cheng B, Fan J, et al. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small, 2019, 15: 1902459

    Article  Google Scholar 

  36. Han X, Lu B, Huang X, et al. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Appl Catal B-Environ, 2022, 316: 121587

    Article  CAS  Google Scholar 

  37. Niu Q, Dong S, Tian J, et al. Rational design of novel COF/MOF S-scheme heterojunction photocatalyst for boosting CO2 reduction at gas-solid interface. ACS Appl Mater Interfaces, 2022, 14: 24299–24308

    Article  CAS  PubMed  Google Scholar 

  38. Xu ML, Liu LW, Wang K, et al. Hierarchical-metal-organic frame-work-templated Cu0.5Zn0.5In2S4-rGO-g-C3N4: Flexible synthesis and enhanced photocatalytic activity. J Mater Chem A, 2020, 8: 22124–22133

    Article  CAS  Google Scholar 

  39. Luo J, Feng C, Fan C, et al. Enhanced indirect attack behavior of 1O2 for photocatalytic H2O2 production: Possible synergistic regulation of spin polarization and water bridge on photocatalytic reaction. J Catal, 2022, 413: 1132–1145

    Article  CAS  Google Scholar 

  40. Dong J, Gong Z, Chen Y, et al. Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst. Sci China Mater, 2023, 66: 3176–3188

    Article  CAS  Google Scholar 

  41. Liu R, Zuo D, Tan C Construction of C/ZnO/BiOI photocatalyst for enhanced degradation of carbaryl: Characterization, performance and mechanism J Alloys Compd, 2022, 911: 165023

    Article  CAS  Google Scholar 

  42. Yao J, Yang L, Huang L, et al. Construction of a n-p type Bi12O15 Cl6@BiOI-CQDs junction with core-shell structure for boosting photocatalytic degradation and antibacterial performance. Appl Surf Sci, 2022, 578: 151913

    Article  CAS  Google Scholar 

  43. Zhu J, Bi Q, Tao Y, et al. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv Funct Mater, 2023, 33: 2213131

    Article  CAS  Google Scholar 

  44. Cao Y, Wang G, Liu H, et al. Regular octahedron Cu-MOFs modifies Mn0.05Cd0.95S nanoparticles to form a S-scheme heterojunction for photocatalytic hydrogen evolution. Int J Hydrogen Energy, 2021, 46: 7230–7240

    Article  CAS  Google Scholar 

  45. Cheng J, Wan S, Cao S Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen. Angew Chem Int Ed, 2023, 62: e202310476

    Article  CAS  Google Scholar 

  46. Fang X, Tang Y, Ma YJ, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci China Mater, 2023, 66: 664–671

    Article  CAS  Google Scholar 

  47. Wan S, Xu J, Cao S, et al. Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip Mater, 2022, 1: 294–308

    Article  CAS  Google Scholar 

  48. Jin J, Yu J, Guo D, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11: 5262–5271

    Article  CAS  PubMed  Google Scholar 

  49. Wang K, Feng X, Shangguan Y, et al. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chin J Catal, 2022, 43: 246–254

    Article  CAS  Google Scholar 

  50. Zhang Y, Cao N, Liu X, et al. Enhanced electron density of the π-conjugated structure and in-plane charge transport to boost photocatalytic H2 evolution of g-C3N4. Sci China Mater, 2023, 66: 2274–2282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFE0114800) and the National Natural Science Foundation of China (22278324 and 52073223)

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang C and Cao S proposed the conceptualization; Yang C and Zhang Q conducted the experiments and data processing; Yang C wrote the original draft; Yang C, Zhang Q, Wang W, and Cao S conducted the formal analysis; Wang W, Cheng B, Yu J, and Cao S conducted the writing-review & editing; Cheng B, Yu J, and Cao S provided the experimental resource; Cao S provided the funding acquisition and finished the final supervision work All the authors contributed to the general discussion.

Corresponding authors

Correspondence to Wang Wang  (王往) or Shaowen Cao  (曹少文).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Chao Yang obtained his BS degree in environmental engineering from Hubei Normal University in 2017. Then he obtained his MS degree in environmental chemistry from South-Central Minzu University in 2020. He is now a PhD candidate under the supervision of Prof. Shaowen Cao at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. His current research includes photocatalytic H2O2 evolution, H2 production, and CO2 reduction.

Wang Wang received his PhD degree in physical chemistry in 2020 from Wuhan University. From Oct 2018 to Nov 2019, he was a joint PhD at Northeastern University (USA). Then he was a postdoc at Wuhan University until Sept 2023. His current research interests include the photocatalysis and electrocatalysis for energy and environmental applications.

Shaowen Cao received his PhD degree in materials chemistry & physics in 2010 from Shanghai Institute of Ceramics, Chinese Academy of Sciences. Then he was a Research Fellow at Nanyang Technological University until Feb 2014. From Mar 2018 to Feb 2020, he was a Visiting Scientist at Max Planck Institute of Colloids and Interfaces. His current research interests include the design and fabrication of photocatalytic materials for energy and environmental applications.

Electronic Supplementary Material

40843_2024_2789_MOESM1_ESM.pdf

2D/2D g-C3N4@BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, Q., Wang, W. et al. 2D/2D g-C3N4@BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-024-2789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-024-2789-0

Keywords

Navigation