Skip to main content
Log in

Copper-based catalysts for carbon monoxide electroreduction to multicarbon products

铜基催化剂用于一氧化碳电还原为多碳产品

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrochemical carbon dioxide reduction (ECO2R) is an attractive pathway to store carbon and renewable energy as chemical bonds in multi-carbon products. However, the complex multi-step reaction processes set huge obstacles for the direct conversion of CO2 to C2+ products. A strategy that uses carbon monoxide (CO) as a “transfer station” to produce C2+ at improved selectivity and reaction rates via the tandem ECO2R to CO and electrochemical CO reduction (ECOR) has attracted a lot attention. In this review, we focus on the design strategy of Cu-based electrocatalysts toward the formation of specific C2+ products in ECOR. Representative design strategies for catalysts engineering are summarized in various aspects, and the most recent research in the improvement of electrolysis reactor is included. Finally, the main challenges and the future prospects in this research field are expounded. These insights and perspectives offer meaningful guidance for designing Cu-based electrocatalytic system with enhanced C2+ product selectivity.

摘要

电化学二氧化碳还原(ECO2R)是一种将碳和可再生能源的能量 储存在多碳产品(C2+)的化学键中的有效途径. 然而, 反应涉及的复杂步 骤为CO2直接转化为C2+设置了巨大的障碍. 一种利用CO作为“中转站”, 通过串联ECO2R和电化学CO还原(ECOR)以提高生产C2+的选择性和反 应速率的策略引起了人们的广泛关注. 本文总结了铜基电催化剂在 ECOR中催化特定C2+生成的设计策略. 其次, 从各个方面总结了催化剂 工程的代表性设计策略, 并介绍了电解反应器改进方面的最新进展. 最 后, 阐述了该研究领域面临的主要挑战和未来前景. 这些见解和观点将 为铜基电催化剂的设计提供有益指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdja YY, Pérez-Gallent E, Figueiredo MC, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4: 732–745

    Article  CAS  Google Scholar 

  2. Wang Y, Liu J, Zheng G. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv Mater, 2021, 33: 2005798

    Article  CAS  Google Scholar 

  3. Zheng Y, Vasileff A, Zhou X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc, 2019, 141: 7646–7659

    Article  CAS  PubMed  Google Scholar 

  4. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119: 7610–7672

    Article  CAS  PubMed  Google Scholar 

  5. Fu J, Li P, Lin Y, et al. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ Health, 2022, 1: 259–279

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Zhu C, Liu X, et al. Nonmicrobial mechanisms dominate the release of CO2 and the decomposition of organic matter during the short-term redox process in paddy soil slurry. Eco-Environ Health, 2023, 2: 227–234

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zaidi SAH, Hussain M, Uz Zaman Q. Dynamic linkages between financial inclusion and carbon emissions: Evidence from selected OECD countries. Resources Environ Sustainability, 2021, 4: 100022

    Article  Google Scholar 

  8. Wang F, Liu J, Qin G, et al. Coastal blue carbon in China as a nature-based solution toward carbon neutrality. Innovation, 2023, 4: 100481

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hui S, Jiang Y, Jiang Y, et al. Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: Recent progress and perspectives. Energy Mater, 2023, 3: 300055

    Article  CAS  Google Scholar 

  10. Chen JM. Carbon neutrality: Toward a sustainable future. Innovation, 2021, 2: 100127

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang F, Harindintwali JD, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality. Innovation, 2021, 2: 100180

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Tian S, Li H, et al. Harnessing microbial electrosynthesis for a sustainable future. TIMS, 2023, 1: 100008

    Article  Google Scholar 

  13. Cao C, Zhou S, Zuo S, et al. Si doping-induced electronic structure regulation of single-atom Fe sites for boosted CO2 electroreduction at low overpotentials. Research, 2023, 6: 0079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu W, Fu J, Liu J, et al. Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl Catal B-Environ, 2020, 264: 118502

    Article  CAS  Google Scholar 

  15. Liu LX, Zhou Y, Chang YC, et al. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy, 2020, 77: 105296

    Article  CAS  Google Scholar 

  16. Zhu W, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2013, 135: 16833–16836

    Article  CAS  PubMed  Google Scholar 

  17. Masood ul Hasan I, Peng L, Mao J, et al. Carbon-based metal-free catalysts for electrochemical CO2 reduction: Activity, selectivity, and stability. Carbon Energy, 2021, 3: 24–49

    Article  CAS  Google Scholar 

  18. Li X, Chen Y, Zhan X, et al. Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. TIMS, 2023, 1: 100014

    Article  Google Scholar 

  19. Wu Y, Du H, Li P, et al. Heterogeneous electrocatalysis of carbon dioxide to methane. Methane, 2023, 2: 148–175

    Article  Google Scholar 

  20. Wang X, Li P, Cao Y, et al. Techno-economic analysis and industrial application prospects of single-atom materials in CO2 catalysis. Chem J Chin U, 2022, 43: 20220347

    Google Scholar 

  21. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2019, 2: 648–658

    Article  CAS  Google Scholar 

  22. Lu X, Tong D, He K. China’s carbon neutrality: An extensive and profound systemic reform. Front Environ Sci Eng, 2023, 17: 14

    Article  CAS  Google Scholar 

  23. Yang H, Huang X, Hu J, et al. Achievements, challenges and global implications of China’s carbon neutral pledge. Front Environ Sci Eng, 2022, 16: 111

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li L, Zhao ZJ, Zhang G, et al. Neural network accelerated investigation of the dynamic structure–performance relations of electrochemical CO2 reduction over SnOx surfaces. Research, 2023, 6: 0067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dinh CT, García de Arquer FP, Sinton D, et al. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett, 2018, 3: 2835–2840

    Article  CAS  Google Scholar 

  26. Kim JYT, Zhu P, Chen FY, et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat Catal, 2022, 5: 288–299

    Article  CAS  Google Scholar 

  27. Xie L, Jiang Y, Zhu W, et al. Cu-based catalyst designs in CO2 electroreduction: Precise modulation of reaction intermediates for high-value chemical generation. Chem Sci, 2023, 14: 13629–13660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu W, Zhang YJ, Zhang H, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc, 2014, 136: 16132–16135

    Article  CAS  PubMed  Google Scholar 

  29. Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun, 2021, 12: 586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge. Exploration, 2023, 3: 20230001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu F, Ge J, Gao Y, et al. Molten salt electro-preparation of graphitic carbons. Exploration, 2023, 3: 20210186

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin S, Hao Z, Zhang K, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew Chem Int Ed, 2021, 60: 20627–20648

    Article  CAS  Google Scholar 

  33. Chen Z, Wang C, Zhong X, et al. Achieving efficient CO2 electrolysis to CO by local coordination manipulation of nickel single-atom catalysts. Nano Lett, 2023, 23: 7046–7053

    Article  CAS  PubMed  Google Scholar 

  34. Zhu W, Kattel S, Jiao F, et al. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv Energy Mater, 2019, 9: 1802840

    Article  Google Scholar 

  35. Song RB, Zhu W, Fu J, et al. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency. Adv Mater, 2020, 32: 1903796

    Article  CAS  Google Scholar 

  36. Chen Y, Zhang J, Yang L, et al. Recent advances in non-precious metal–nitrogen–carbon single-site catalysts for CO2 electroreduction reaction to CO. Electrochem Energy Rev, 2022, 5: 11

    Article  CAS  Google Scholar 

  37. Nguyen DLT, Kim Y, Hwang YJ, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy, 2020, 2: 72–98

    Article  CAS  Google Scholar 

  38. Yan C, Yuan H, Wang X, et al. Sn-doping stabilizes residual oxygen species to promote intermediate desorption for enhanced CO2 to CO conversion. Sci China Mater, 2023, 66: 3547–3554

    Article  CAS  Google Scholar 

  39. Jiao F, Li J, Pan X, et al. Selective conversion of syngas to light olefins. Science, 2016, 351: 1065–1068

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, Qin X, Xu Y, et al. Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts. Nat Commun, 2022, 13: 6720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang X, Meng X, Yang J, et al. Liquid viscosity and density of squalane and squalane with dissolved carbon dioxide at temperatures from (298.15 to 548.15) K. Int J Thermophys, 2023, 44: 168

    Article  CAS  Google Scholar 

  42. Zhou W, Cheng K, Kang J, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev, 2019, 48: 3193–3228

    Article  CAS  PubMed  Google Scholar 

  43. Wentrup J, Pesch GR, Thöming J. Dynamic operation of Fischer-Tropsch reactors for power-to-liquid concepts: A review. Renew Sustain Energy Rev, 2022, 162: 112454

    Article  CAS  Google Scholar 

  44. Wu HK, Zhang F, Li JY, et al. Photo-driven Fischer–Tropsch synthesis. J Mater Chem A, 2020, 8: 24253–24266

    Article  CAS  Google Scholar 

  45. Du H, Fu J, Liu LX, et al. Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Mater Today, 2022, 59: 182–199

    Article  CAS  Google Scholar 

  46. Kim JYT, Sellers C, Hao S, et al. Different distributions of multicarbon products in CO2 and CO electroreduction under practical reaction conditions. Nat Catal, 2023, 6: 1115–1124

    Article  CAS  Google Scholar 

  47. Jouny M, Hutchings GS, Jiao F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat Catal, 2019, 2: 1062–1070

    Article  CAS  Google Scholar 

  48. Overa S, Crandall BS, Shrimant B, et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat Catal, 2022, 5: 738–745

    Article  CAS  Google Scholar 

  49. Li J, Chang K, Zhang H, et al. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catal, 2019, 9: 4709–4718

    Article  CAS  Google Scholar 

  50. Ma M, Deng W, Xu A, et al. Local reaction environment for selective electroreduction of carbon monoxide. Energy Environ Sci, 2022, 15: 2470–2478

    Article  CAS  Google Scholar 

  51. Ozden A, García de Arquer FP, Huang JE, et al. Carbon-efficient carbon dioxide electrolysers. Nat Sustain, 2022, 5: 563–573

    Article  Google Scholar 

  52. Yu SH, Antonietti M. Creative and relevant materials innovation. TIMS, 2023, 1: 100002

    Article  Google Scholar 

  53. Xiang Y, Sun Y, Liu Y, et al. Computational design of a two-dimensional copper carbide monolayer as a highly efficient catalyst for carbon monoxide electroreduction to ethanol. ACS Appl Mater Interfaces, 2023, 15: 13033–13041

    Article  CAS  PubMed  Google Scholar 

  54. Ji Y, Guan A, Zheng G. Copper-based catalysts for electrochemical carbon monoxide reduction. Cell Rep Phys Sci, 2022, 3: 101072

    Article  CAS  Google Scholar 

  55. Zhang H, Li J, Cheng MJ, et al. CO electroreduction: Current development and understanding of Cu-based catalysts. ACS Catal, 2019, 9: 49–65

    Article  CAS  Google Scholar 

  56. Yu J, Wang J, Ma Y, et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv Funct Mater, 2021, 31: 2102151

    Article  CAS  Google Scholar 

  57. Jin J, Wicks J, Min Q, et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature, 2023, 617: 724–729

    Article  CAS  PubMed  Google Scholar 

  58. Gao A, Gu L. Insight into materials science from a reductionist perspective. TIMS, 2023, 1: 100009

    Article  Google Scholar 

  59. Duong HP, Rivera de la Cruz JG, Tran NH, et al. Silver and copper nitride cooperate for CO electroreduction to propanol. Angew Chem Int Ed, 2023, 62: e202310788

    Article  Google Scholar 

  60. Liu J, You F, He B, et al. Directing the architecture of surface-clean Cu2O for CO electroreduction. J Am Chem Soc, 2022, 144: 12410–12420

    Article  CAS  PubMed  Google Scholar 

  61. Shi Q, Zhu W, Zhong H, et al. Highly dispersed platinum atoms on the surface of AuCu metallic aerogels for enabling H2O2 production. ACS Appl Energy Mater, 2019, 2: 7722–7727

    Article  CAS  Google Scholar 

  62. Luo M, Ozden A, Wang Z, et al. Coordination polymer electro-catalysts enable efficient CO-to-acetate conversion. Adv Mater, 2023, 35: 2209567

    Article  CAS  Google Scholar 

  63. Du H, Liu LX, Cai Y, et al. In situ formed N-containing copper nanoparticles: A high-performance catalyst toward carbon monoxide electroreduction to multicarbon products with high faradaic efficiency and current density. Nanoscale, 2022, 14: 7262–7268

    Article  CAS  PubMed  Google Scholar 

  64. Lai J, Zhang Z, Yang> X, et al. Opening the black box: Insights into the restructuring mechanism to steer catalytic performance. TIMS, 2023, 1: 100020

    Article  Google Scholar 

  65. Wu ZZ, Zhang XL, Yang PP, et al. Gerhardtite as a precursor to an efficient CO-to-acetate electroreduction catalyst. J Am Chem Soc, 2023, 145: 24338–24348

    Article  CAS  PubMed  Google Scholar 

  66. Hou J, Chang X, Li J, et al. Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J Am Chem Soc, 2022, 144: 22202–22211

    Article  CAS  PubMed  Google Scholar 

  67. Yang W, Liu H, Qi Y, et al. Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. J Energy Chem, 2023, 85: 102–107

    Article  CAS  Google Scholar 

  68. Du J, Chen A, Hou S, et al. CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO2 electrochemical reduction. Carbon Energy, 2022, 4: 1274–1284

    Article  CAS  Google Scholar 

  69. Ruqia B, Tomboc GM, Kwon T, et al. Recent advances in the electrochemical CO reduction reaction towards highly selective formation of CX products (X = 1–3). Chem Catal, 2022, 2: 1961–1988

    Article  CAS  Google Scholar 

  70. De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 2019, 364: eaav3506

    Article  CAS  PubMed  Google Scholar 

  71. Yi JD, Gao X, Zhou H, et al. Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew Chem Int Ed, 2022, 61: e202212329

    Article  CAS  Google Scholar 

  72. Martin AJ, Larrazábal GO, Pérez-Ramírez J. Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: Lessons from water electrolysis. Green Chem, 2015, 17: 5114–5130

    Article  CAS  Google Scholar 

  73. Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal, 2019, 2: 1124–1131

    Article  CAS  Google Scholar 

  74. Ma G, Syzgantseva OA, Huang Y, et al. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nat Commun, 2023, 14: 501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niu W, Chen Z, Guo W, et al. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat Commun, 2023, 14: 4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yin Z, Peng H, Wei X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ Sci, 2019, 12: 2455–2462

    Article  CAS  Google Scholar 

  77. Lagadec MF, Grimaud A. Water electrolysers with closed and open electrochemical systems. Nat Mater, 2020, 19: 1140–1150

    Article  CAS  PubMed  Google Scholar 

  78. Möller T, Ju W, Bagger A, et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ Sci, 2019, 12: 640–647

    Article  Google Scholar 

  79. Wei P, Li H, Lin L, et al. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci China Chem, 2020, 63: 1711–1715

    Article  CAS  Google Scholar 

  80. She X, Wang Y, Xu H, et al. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew Chem Int Ed, 2022, 61: e202211396

    Article  CAS  Google Scholar 

  81. Xiang SQ, Shi JL, Gao ST, et al. Thermodynamic and kinetic competition between C–H and O–H bond formation pathways during electrochemical reduction of CO on copper electrodes. ACS Catal, 2021, 11: 2422–2434

    Article  CAS  Google Scholar 

  82. Montoya JH, Shi C, Chan K, et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett, 2015, 6: 2032–2037

    Article  CAS  PubMed  Google Scholar 

  83. Goodpaster JD, Bell AT, Head-Gordon M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J Phys Chem Lett, 2016, 7: 1471–1477

    Article  CAS  PubMed  Google Scholar 

  84. Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal, 2018, 8: 1490–1499

    Article  CAS  Google Scholar 

  85. Wang L, Nitopi SA, Bertheussen E, et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal, 2018, 8: 7445–7454

    Article  CAS  Google Scholar 

  86. Lin Y, Wang T, Zhang L, et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat Commun, 2023, 14: 3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal, 2020, 3: 478–487

    Article  CAS  Google Scholar 

  88. Cheng T, Xiao H, Goddard WA. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J Am Chem Soc, 2017, 139: 11642–11645

    Article  CAS  PubMed  Google Scholar 

  89. Pérez-Gallent E, Figueiredo MC, Calle-Vallejo F, et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew Chem Int Ed, 2017, 56: 3621–3624

    Article  Google Scholar 

  90. Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed, 2013, 52: 7282–7285

    Article  CAS  Google Scholar 

  91. Chen R, Su H, Liu D, et al. Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew Chem Int Ed, 2020, 59: 154–160

    Article  CAS  Google Scholar 

  92. Lum Y, Cheng T, Goddard III WA, et al. Electrochemical CO reduction builds solvent water into oxygenate products. J Am Chem Soc, 2018, 140: 9337–9340

    Article  CAS  PubMed  Google Scholar 

  93. Ni F, Yang H, Wen Y, et al. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Sci China Mater, 2020, 63: 2606–2612

    Article  Google Scholar 

  94. Sun Q, Zhao Y, Tan X, et al. Atomically dispersed Cu–Au alloy for efficient electrocatalytic reduction of carbon monoxide to acetate. ACS Catal, 2023, 13: 5689–5696

    Article  CAS  Google Scholar 

  95. Jouny M, Lv JJ, Cheng T, et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat Chem, 2019, 11: 846–851

    Article  CAS  PubMed  Google Scholar 

  96. Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat Catal, 2018, 1: 748–755

    Article  CAS  Google Scholar 

  97. Wei P, Gao D, Liu T, et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat Nanotechnol, 2023, 18: 299–306

    Article  CAS  PubMed  Google Scholar 

  98. Pang Y, Li J, Wang Z, et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat Catal, 2019, 2: 251–258

    Article  CAS  Google Scholar 

  99. Xiao H, Cheng T, Goddard III WA. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J Am Chem Soc, 2017, 139: 130–136

    Article  CAS  PubMed  Google Scholar 

  100. Zhuang TT, Pang Y, Liang ZQ, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal, 2018, 1: 946–951

    Article  CAS  Google Scholar 

  101. Liu C, Zhang M, Li J, et al. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew Chem Int Ed, 2022, 61: e202113498

    Article  CAS  Google Scholar 

  102. Du M, Li X, Pang H, et al. Alloy electrocatalysts. EnergyChem, 2023, 5: 100083

    Article  CAS  Google Scholar 

  103. Zhu W, Tackett BM, Chen JG, et al. Bimetallic electrocatalysts for CO2 reduction. Top Curr Chem (Z), 2018, 376: 41

    Article  Google Scholar 

  104. Zhang J, Yu P, Peng C, et al. Efficient CO electroreduction to methanol by CuRh alloys with isolated Rh sites. ACS Catal, 2023, 13: 7170–7177

    Article  CAS  Google Scholar 

  105. Chen T, Liu T, Shen X, et al. Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction. Sci China Mater, 2021, 64: 2997–3006

    Article  CAS  Google Scholar 

  106. Zhang J, Sui R, Xue Y, et al. Direct synthesis of parallel doped N-MoP/ N-CNT as highly active hydrogen evolution reaction catalyst. Sci China Mater, 2019, 62: 690–698

    Article  CAS  Google Scholar 

  107. Zhou Y, Zhou Z, Chen M, et al. Doping and alloying for improved perovskite solar cells. J Mater Chem A, 2016, 4: 17623–17635

    Article  CAS  Google Scholar 

  108. Huang H, Jia H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew Chem Int Ed, 2017, 56: 3594–3598

    Article  CAS  Google Scholar 

  109. Wang L, Higgins DC, Ji Y, et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc Natl Acad Sci USA, 2020, 117: 12572–12575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang X, Wang Z, Zhuang TT, et al. Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat Commun, 2019, 10: 5186

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li J, Xu A, Li F, et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat Commun, 2020, 11: 3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dorakhan R, Grigioni I, Lee BH, et al. A silver–copper oxide catalyst for acetate electrosynthesis from carbon monoxide. Nat Synth, 2023, 2: 448–457

    Article  Google Scholar 

  113. Li J, Xiong H, Liu X, et al. Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nat Commun, 2023, 14: 698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mu Z, Han N, Xu D, et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat Commun, 2022, 13: 6911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shen H, Wang Y, Chakraborty T, et al. Asymmetrical C–C coupling for electroreduction of CO on bimetallic Cu–Pd catalysts. ACS Catal, 2022, 12: 5275–5283

    Article  CAS  Google Scholar 

  116. Ji Y, Chen Z, Wei R, et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal, 2022, 5: 251–258

    Article  CAS  Google Scholar 

  117. Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem, 2009, 1: 37–46

    Article  PubMed  Google Scholar 

  118. Yuan X, Zhang L, Li L, et al. Ultrathin Pd–Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction. J Am Chem Soc, 2019, 141: 4791–4794

    Article  CAS  PubMed  Google Scholar 

  119. Wang X, Ou P, Ozden A, et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat Energy, 2022, 7: 170–176

    Article  Google Scholar 

  120. Dong H, Zhang X, Li J, et al. Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activity and mechanism insight. Appl Catal B-Environ, 2020, 263: 118270

    Article  CAS  Google Scholar 

  121. Shakeel M, Arif M, Yasin G, et al. Layered by layered Ni-Mn-LDH/g-C3N4 nanohybrid for multi-purpose photo/electrocatalysis: Morphology controlled strategy for effective charge carriers separation. Appl Catal B-Environ, 2019, 242: 485–498

    Article  CAS  Google Scholar 

  122. Hu Q, Qin Y, Wang X, et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ Sci, 2021, 14: 4989–4997

    Article  CAS  Google Scholar 

  123. Meng X, Yang Y, Chen L, et al. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catal, 2019, 9: 4226–4235

    Article  CAS  Google Scholar 

  124. Zhang M, Xiao C, Yan X, et al. Efficient removal of organic pollutants by metal–organic framework derived Co/C yolk-shell nanoreactors: Size-exclusion and confinement effect. Environ Sci Technol, 2020, 54: 10289–10300

    Article  CAS  PubMed  Google Scholar 

  125. Liu W, Qi J, Bai P, et al. Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide. Appl Catal B-Environ, 2020, 272: 118974

    Article  CAS  Google Scholar 

  126. Raciti D, Cao L, Livi KJT, et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal, 2017, 7: 4467–4472

    Article  CAS  Google Scholar 

  127. Luc W, Fu X, Shi J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat Catal, 2019, 2: 423–430

    Article  CAS  Google Scholar 

  128. Du H, Liu LX, Li P, et al. Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol electrosynthesis from carbon monoxide. ACS Nano, 2023, 17: 8663–8670

    Article  CAS  PubMed  Google Scholar 

  129. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577: 509–513

    Article  CAS  PubMed  Google Scholar 

  130. Zhou X, Shan J, Zheng M, et al. Tuning molecular electrophilicity on Cu catalysts to steer CO2 electroreduction selectivity. Sci China Mater, 2023, doi: https://doi.org/10.1007/s40843-023-2676-y

  131. Ji Y, Yang C, Qian L, et al. Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. J Colloid Interface Sci, 2021, 600: 847–853

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Zhao J, Cao C, et al. Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate. ACS Catal, 2023, 13: 3532–3540

    Article  CAS  Google Scholar 

  133. Piqué O, Viñes F, Illas F, et al. Elucidating the structure of ethanol-producing active sites at oxide-derived Cu electrocatalysts. ACS Catal, 2020, 10: 10488–10494

    Article  Google Scholar 

  134. Obasanjo CA, Zeraati AS, Shiran HS, et al. In situ regeneration of copper catalysts for long-term electrochemical CO2 reduction to multiple carbon products. J Mater Chem A, 2022, 10: 20059–20070

    Article  CAS  Google Scholar 

  135. Hu Y, Wang X, Zhang J, et al. In situ engineering 3D conductive core-shell nano-networks and electronic structure of bismuth alloy nanosheets for efficient electrocatalytic CO2 reduction. Sci China Mater, 2023, 66: 2266–2273

    Article  CAS  Google Scholar 

  136. Zhao Q, Wang J, Zhuang Y, et al. In situ reconstruction of Bi nano-particles confined within 3D nanoporous Cu to boost CO2 electroreduction. Sci China Mater, 2024, 67: 796–803

    Article  CAS  Google Scholar 

  137. Sang J, Wei P, Liu T, et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew Chem Int Ed, 2022, 61: e202114238

    Article  CAS  Google Scholar 

  138. Long C, Liu X, Wan K, et al. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Sci Adv, 2023, 9: eadi6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang S, Wang D, Tian B, et al. Synergistic Cu+/Cu0 on Cu2O-Cu interfaces for efficient and selective C2+ production in electrocatalytic CO2 conversion. Sci China Mater, 2023, 66: 1801–1809

    Article  CAS  Google Scholar 

  140. Deng B, Huang M, Li K, et al. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O micro-particles. Angew Chem Int Ed, 2022, 61: e202114080

    Article  CAS  Google Scholar 

  141. Mu S, Lu H, Wu Q, et al. Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO2 reduction. Nat Commun, 2022, 13: 3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gandionco KA, Kim J, Bekaert L, et al. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon Energy, 2024, 6: e410

    Article  CAS  Google Scholar 

  143. Lum Y, Ager JW. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew Chem Int Ed, 2018, 57: 551–554

    Article  CAS  Google Scholar 

  144. Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature, 2014, 508: 504–507

    Article  CAS  PubMed  Google Scholar 

  145. Jiang K, Huang Y, Zeng G, et al. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett, 2020, 5: 1206–1214

    Article  CAS  Google Scholar 

  146. Mariano RG, McKelvey K, White HS, et al. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science, 2017, 358: 1187–1192

    Article  CAS  PubMed  Google Scholar 

  147. Long C, Wan K, Chen Y, et al. Steering the reconstruction of oxide-derived Cu by secondary metal for electrosynthesis of n-propanol from CO. J Am Chem Soc, 2024, 146: 4632–4641

    Article  CAS  PubMed  Google Scholar 

  148. Martić N, Reller C, Macauley C, et al. Ag2Cu2O3—A catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ Sci, 2020, 13: 2993–3006

    Article  Google Scholar 

  149. Rong Y, Liu T, Sang J, et al. Directing the selectivity of CO electrolysis to acetate by constructing metal-organic interfaces. Angew Chem Int Ed, 2023, 62: e202309893

    Article  CAS  Google Scholar 

  150. Wang Q, Lei Y, Wang D, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci, 2019, 12: 1730–1750

    Article  CAS  Google Scholar 

  151. Shah SSA, Sufyan Javed M, Najam T, et al. Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coord Chem Rev, 2022, 471: 214716

    Article  CAS  Google Scholar 

  152. Cui B, Liu C, Zhang J, et al. Waste to wealth: Defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci China Mater, 2021, 64: 2710–2718

    Article  CAS  Google Scholar 

  153. Yan X, Zhuang L, Zhu Z, et al. Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13: 3327–3345

    Article  CAS  PubMed  Google Scholar 

  154. Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries. Adv Mater, 2020, 32: 1905923

    Article  CAS  Google Scholar 

  155. Zhu K, Shi F, Zhu X, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy, 2020, 73: 104761

    Article  CAS  Google Scholar 

  156. Jiang W, Loh H, Low BQL, et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Appl Catal B-Environ, 2023, 321: 122079

    Article  CAS  Google Scholar 

  157. Yang T, Lin L, Lv X, et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano, 2023, 17: 8521–8529

    Article  CAS  PubMed  Google Scholar 

  158. Zhang J, Wang Y, Li Z, et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv Sci, 2022, 9: 2200454

    Article  CAS  Google Scholar 

  159. van Swygenhoven H, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B, 2000, 62: 831–838

    Article  CAS  Google Scholar 

  160. Wang J, Cheng C, Huang B, et al. Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction. Nano Lett, 2021, 21: 980–987

    Article  CAS  PubMed  Google Scholar 

  161. Feng X, Jiang K, Fan S, et al. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci, 2016, 2: 169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thirathipviwat P, Sato S, Song G, et al. A role of atomic size misfit in lattice distortion and solid solution strengthening of TiNbHfTaZr high entropy alloy system. Scripta Mater, 2022, 210: 114470

    Article  CAS  Google Scholar 

  163. Dholabhai PP, Uberuaga BP. Beyond coherent oxide heterostructures: Atomic-scale structure of misfit dislocations. Advcd Theor Sims, 2019, 2: 1900078

    Article  Google Scholar 

  164. Li Z, Fu JY, Feng Y, et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat Catal, 2019, 2: 1107–1114

    Article  CAS  Google Scholar 

  165. Lv J, Yin R, Zhou L, et al. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew Chem Int Ed, 2022, 61: e202207252

    Article  CAS  Google Scholar 

  166. Chen J, Wang L. Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv Mater, 2022, 34: 2103900

    Article  CAS  Google Scholar 

  167. Jiang H, Luo R, Li Y, et al. Recent advances in solid-liquid-gas three-phase interfaces in electrocatalysis for energy conversion and storage. EcoMat, 2022, 4: e12199

    Article  CAS  Google Scholar 

  168. Fei H, Dong J, Chen D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev, 2019, 48: 5207–5241

    Article  CAS  PubMed  Google Scholar 

  169. van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal, 2019, 2: 955–970

    Article  CAS  Google Scholar 

  170. Yue P, Fu Q, Li J, et al. Triple-phase electrocatalysis for the enhanced CO2 reduction to HCOOH on a hydrophobic surface. Chem Eng J, 2021, 405: 126975

    Article  CAS  Google Scholar 

  171. Zhou L, Li C, Lv J, et al. Synergistic regulation of hydrophobicity and basicity for copper hydroxide-derived copper to promote the CO2 electroreduction reaction. Carbon Energy, 2023, 5: e328

    Article  CAS  Google Scholar 

  172. Park S, Grigioni I, Alkayyali T, et al. High carbon efficiency in CO-to-alcohol electroreduction using a CO reservoir. Joule, 2023, 7: 2335–2348

    Article  CAS  Google Scholar 

  173. Duan GY, Li XL, Ding GR, et al. Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0-CuI tandem catalyst. Angew Chem Int Ed, 2022, 61: e202110657

    Article  CAS  Google Scholar 

  174. Duan GY, Li XQ, Chen JW, et al. Poly(ionic liquid) boosts overall performance of electrocatalytic reduction of low concentration of CO gas. Chem Eng J, 2023, 451: 138491

    Article  CAS  Google Scholar 

  175. Rabiee H, Ge L, Zhang X, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review. Energy Environ Sci, 2021, 14: 1959–2008

    Article  CAS  Google Scholar 

  176. Nguyen TN, Dinh CT. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem Soc Rev, 2020, 49: 7488–7504

    Article  CAS  PubMed  Google Scholar 

  177. Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy, 2022, 7: 130–143

    Article  CAS  Google Scholar 

  178. Xu Q, Xu A, Garg S, et al. Enriching surface-accessible CO2 in the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew Chem Int Ed, 2023, 62: e202214383

    Article  CAS  Google Scholar 

  179. Weng LC, Bell AT, Weber AZ. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ Sci, 2019, 12: 1950–1968

    Article  CAS  Google Scholar 

  180. Hasa B, Cherniack L, Xia R, et al. Benchmarking anion-exchange membranes for electrocatalytic carbon monoxide reduction. Chem Catal, 2023, 3: 100450

    Article  CAS  Google Scholar 

  181. Rabinowitz JA, Ripatti DS, Mariano RG, et al. Improving the energy efficiency of CO electrolysis by controlling Cu domain size in gas diffusion electrodes. ACS Energy Lett, 2022, 7: 4098–4105

    Article  CAS  Google Scholar 

  182. Ripatti DS, Veltman TR, Kanan MW. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high singlepass conversion. Joule, 2019, 3: 240–256

    Article  CAS  Google Scholar 

  183. Higgins D, Hahn C, Xiang C, et al. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett, 2018, 4: 317–324

    Article  Google Scholar 

  184. Lees EW, Mowbray BAW, Parlane FGL, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater, 2022, 7: 55–64

    Article  CAS  Google Scholar 

  185. Xu Q, Garg S, Moss AB, et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat Catal, 2023, 6: 1042–1051

    Article  CAS  Google Scholar 

  186. Wang Q, Dong H, Yu H, et al. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J Power Sources, 2015, 279: 1–5

    Article  CAS  Google Scholar 

  187. Rabiee H, Heffernan JK, Ge L, et al. Tuning flow-through Cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+ products. Appl Catal B-Environ, 2023, 330: 122589

    Article  CAS  Google Scholar 

  188. Ji Y, Shi Y, Liu C, et al. Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio. Sci China Mater, 2020, 63: 2351–2357

    Article  Google Scholar 

  189. Qiu N, Li J, Wang H, et al. Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction. Sci China Mater, 2022, 65: 3302–3323

    Article  CAS  Google Scholar 

  190. Wang Z, Zou G, Park JH, et al. Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction. Sci China Mater, 2024, 67: 397–423

    Article  CAS  Google Scholar 

  191. Yang C, Gao Z, Wang D, et al. Bimetallic phthalocyanine hetero-structure used for highly selective electrocatalytic CO2 reduction. Sci China Mater, 2022, 65: 155–162

    Article  CAS  Google Scholar 

  192. Yang M, Sun J, Qin Y, et al. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci China Mater, 2022, 65: 536–542

    Article  CAS  Google Scholar 

  193. Gong L, Zhang D, Lin CY, et al. Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv Energy Mater, 2019, 9: 1902625

    Article  CAS  Google Scholar 

  194. Yang Z, Gao W, Jiang Q. A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. J Mater Chem A, 2020, 8: 17507–17515

    Article  CAS  Google Scholar 

  195. Vasilyev DV, Shyshkanov S, Shirzadi E, et al. Principal descriptors of ionic liquid co-catalysts for the electrochemical reduction of CO2. ACS Appl Energy Mater, 2020, 3: 4690–4698

    Article  CAS  Google Scholar 

  196. Yuan H, Li Z, Zeng XC, et al. Descriptor-based design principle for two-dimensional single-atom catalysts: Carbon dioxide electroreduction. J Phys Chem Lett, 2020, 11: 3481–3487

    Article  CAS  PubMed  Google Scholar 

  197. Gao W, Xu Y, Xiong H, et al. CO binding energy is an incomplete descriptor of Cu-based catalysts for the electrochemical CO2 reduction reaction. Angew Chem, 2023, 135: e202313798

    Article  Google Scholar 

  198. Yin Z, Yu J, Xie Z, et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J Am Chem Soc, 2022, 144: 20931–20938

    Article  CAS  PubMed  Google Scholar 

  199. Feng J, Zhang L, Liu S, et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat Commun, 2023, 14: 4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang L, Yang X, Yuan Q, et al. Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy. Nat Commun, 2023, 14: 8311

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jordaan SM, Wang C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat Catal, 2021, 4: 915–920

    Article  Google Scholar 

  202. Chang F, Xiao M, Miao R, et al. Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem Energy Rev, 2022, 5: 4

    Article  CAS  Google Scholar 

  203. Wang X, Hu Q, Li G, et al. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts. Electrochem Energy Rev, 2022, 5: 28

    Article  CAS  Google Scholar 

  204. Dai Y, Kong F, Tai X, et al. Advances in graphene-supported singleatom catalysts for clean energy conversion. Electrochem Energy Rev, 2022, 5: 22

    Article  CAS  Google Scholar 

  205. Kou Z, Li X, Wang T, et al. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem Energy Rev, 2022, 5: 82–111

    Article  CAS  Google Scholar 

  206. Li L, Liu Z, Yu X, et al. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew Chem Int Ed, 2023, 62: e202300226

    Article  CAS  Google Scholar 

  207. Ma Z, Yang Z, Lai W, et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat Commun, 2022, 13: 7596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gu J, Liu S, Ni W, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal, 2022, 5: 268–276

    Article  CAS  Google Scholar 

  209. Kurihara R, Nagita K, Ohashi K, et al. Carbon monoxide reduction reaction to produce multicarbon products in acidic electrolytes using gas diffusion electrode loaded with copper nanoparticles. Adv Mater Inter, 2024, 11: 2300731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhao W would like to acknowledge the support from the Natural Science Foundation of Jiangsu Province (BK20210189), the National Natural Science Foundation of China (22176086), the State Key Laboratory of Pollution Control and Resource Reuse, the Fundamental Research Funds for the Central Universities (021114380183, 021114380189, and 021114380199), the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University, the Research Funds for Jiangsu Distinguished Professor, and the Carbon Peaking and Carbon Neutrality Technological Innovation Foundation of Jiangsu Province (BE2022861). Sun X Would like to thank the support from the National Natural Science Foundation of China (82272138 and 81971738) and Jiangsu Province Outstanding Youth Fund (BK20220086). Lin R would like to thank the support from the National Natural Science Foundation of China (52276177).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhu W supervised the project and organized the collaboration. Zhao W wrote the manuscript and Liu J, Wang G, Wang X, Yang C, Li J, Wang Y, Sun X, Lin R and Zuo G revised the manuscript. All authors discussed, edited and commented on the manuscript.

Corresponding author

Correspondence to Wenlei Zhu  (朱文磊).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Wen Zhao is pursuing a Master degree at the School of the Environment, Nanjing University, under the supervision of Prof. Wenlei Zhu. Her research focuses on the electrochemical reduction of carbon monoxide.

Wenlei Zhu is a professor at the School of the Environment, Nanjing University. He obtained his BSc and PhD degrees from Nanjing University and Brown University, respectively, followed by postdoc at Washington University in St. Louis, Columbia University in the City of New York and University of Delaware for several years. His current research interests focus on resource utilization of greenhouse gases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Liu, J., Wang, G. et al. Copper-based catalysts for carbon monoxide electroreduction to multicarbon products. Sci. China Mater. 67, 1684–1705 (2024). https://doi.org/10.1007/s40843-023-2884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2884-8

Keywords

Navigation