Skip to main content
Log in

Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation

碳量子点/四(4-羧基苯基)卟啉/BiOBr S型异质结用于高效光催化降解抗生素

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Solar-powered photocatalysis for treating pharmaceutical wastewater is a promising approach for tackling environmental issues and energy crisis. However, its efficiency is hindered by unsatisfactory light-absorption efficiency, rapid charge recombination, and weak photo-redox potential. Here, an organic/inorganic ternary S-scheme system of carbon quantum dots (CDs)/tetra (4-carboxyphenyl) porphyrin/BiOBr (TCPP/CDs/BOB) was ingeniously built by depositing CDs and TCPP onto BOB microspheres for effective purification of tetracycline hydrochloride (TC) under visible light. The Fermi level difference triggers electron delivery from TCPP to BOB upon hybridization, thereby creating an internal electric field (IEF) at the interface. This impels the effective separation of powerful photo-induced carriers. Moreover, CDs perform as electron reservoirs to further promote S-scheme carrier separation. Thus, more powerful photoelectrons in the CDs and holes in the BOB valence band are reserved for participation in photocatalytic reactions. The optimized TCPP/CDs/BOB-2 heterostructure exhibits an enhanced TC degradation capacity of 83.6% within 40 min and the rate constant of TCPP/CDs/BOB-2 is roughly 2.3, 1.8 and 2.0 times that of BOB, CDs/BOB, and TCPP/BOB, respectively. This work provides a new perspective for exploring organic/inorganic ternary S-scheme photocatalysts for water purification.

摘要

太阳能光催化处理制药废水是缓解环境问题和能源危机的一种很有前途的方法. 然而, 提高其处理效率面临众多挑战, 如光吸收效率低、光生载流子快速复合和光氧化还原电位低等. 本文通过在BiOBr(BOB)微球上沉积碳量子点(CDs)和四(4-羧基苯基)卟啉(TCPP), 巧妙地构建了TCPP/CDs/BOB有机/无机三元S型异质结, 用于在可见光下有效降解水体中的盐酸四环素(TC). 研究发现, 由于两者之间的费米能级差异, 在形成异质结时触发了电子从TCPP传递到BOB, 从而在界面处构建内部电场(IEF). 这极大推动了光诱导载流子的有效分离. 此外, CDs作为电子收集器进一步提高了S型异质结的载流子分离能力, 因此保留了在CDs中聚集更强还原能力的光电子和在BOB价带中更强氧化能力的空穴来参与光催化反应. 在这些催化剂中, TCPP/CDs/BOB-2异质结催化剂在40 min内对TC的降解能力高达83.6%. TCPP/CDs/BOB-2的反应速率常数(k)分别约为BOB、CDs/BOB和TCPP/BOB的2.3、1.8和2.0倍. 这项工作为探索用于水净化的有机/无机三元S型光催化剂提供了新的视角.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Previšić A, Vilenica M, Vučković N, et al. Aquatic insects transfer pharmaceuticals and endocrine disruptors from aquatic to terrestrial ecosystems. Environ Sci Technol, 2021, 55: 3736–3746

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Lu S, Lin C, Lei K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China. Water Res, 2020, 184: 116187

    Article  CAS  PubMed  Google Scholar 

  3. Xu H, Jia Y, Sun Z, et al. Environmental pollution, a hidden culprit for health issues. Eco-Environ Health, 2022, 1: 31–45

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li X, He F, Wang Z, et al. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. Eco-Environ Health, 2022, 1: 181–197

    Article  PubMed  PubMed Central  Google Scholar 

  5. McDonald RI, Green P, Balk D, et al. Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci USA, 2011, 108: 6312–6317

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caban M, Stepnowski P. How to decrease pharmaceuticals in the environment? A review. Environ Chem Lett, 2021, 19: 3115–3138

    Article  CAS  Google Scholar 

  7. dos Santos AJ, Barazorda-Ccahuana HL, Caballero-Manrique G, et al. Accelerating innovative water treatment in Latin America. Nat Sustain, 2023, 6: 349–351

    Article  Google Scholar 

  8. Wang M, He W, Hua Y, et al. Alternative photothermal/electrothermal hierarchical membrane for hypersaline water treatment. SusMat, 2022, 2: 679–688

    Article  CAS  Google Scholar 

  9. Jeon I, Ryberg EC, Alvarez PJJ, et al. Technology assessment of solar disinfection for drinking water treatment. Nat Sustain, 2022, 5: 801–808

    Article  Google Scholar 

  10. Hodges BC, Cates EL, Kim JH. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat Nanotech, 2018, 13: 642–650

    Article  ADS  CAS  Google Scholar 

  11. Wang Z, Sun Z, Yin H, et al. The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction. eScience, 2023, 3: 100136

    Article  Google Scholar 

  12. Xing Y, Liu S. Recent progress in π-conjugated polymer-inorganic heterostructures for photocatalysis. Chin J Struc Chem, 2022, 41: 2209056–2209068

    CAS  Google Scholar 

  13. Shang W, Liu W, Cai X, et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv Powder Mater, 2023, 2: 100094

    Article  Google Scholar 

  14. Ma J, Li X, Li Y, et al. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals in soluble biomass solution. Adv Powder Mater, 2022, 1: 100058

    Article  Google Scholar 

  15. Zhang F, Li X, Dong X, et al. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. Chin J Catal, 2022, 43: 2395–2404

    Article  CAS  Google Scholar 

  16. Zhu L, Yan Q, Ran M, et al. Selective removal of ultrafine suspended solids during organic pollutant degradation by a MoS2/graphene oxide sponge. Sci Bull, 2023, 68: 892–896

    Article  CAS  Google Scholar 

  17. Yang H, Li C, Liu T, et al. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat Nanotechnol, 2023, 18: 307–315

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Stanley PM, Haimerl J, Shustova NB, et al. Merging molecular catalysts and metal-organic frameworks for photocatalytic fuel production. Nat Chem, 2022, 14: 1342–1356

    Article  CAS  PubMed  Google Scholar 

  19. Andrei V, Ucoski GM, Pornrungroj C, et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature, 2022, 608: 518–522

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Swift E. A durable semiconductor photocatalyst. Science, 2019, 365: 320–321

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kim J, Lee SH, Tieves F, et al. Nicotinamide adenine dinucleotide as a photocatalyst. Sci Adv, 2019, 5: eaax0501

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang G, Deng Q, Li H, et al. Mannitol and acidity co-tuned synthesis of oxygen-vacancy-modified bismuth molybdate nanorods for efficient photocatalytic nitrogen reduction to ammonia. Sci China Mater, 2023, 66: 1435–1446

    Article  CAS  Google Scholar 

  23. Dong J, Gong Z, Chen Y, et al. Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst. Sci China Mater, 2023, 66: 3176–3188

    Article  CAS  Google Scholar 

  24. Zhou W, Jing Q, Li J, et al. Organic photocatalysts for solar water splitting: Molecular- and aggregate-level modifications. Acta Physico Chim Sin, 2022, 0: 2211010

    Article  Google Scholar 

  25. Huang W, Bo T, Zuo S, et al. Surface decorated Ni sites for superior photocatalytic hydrogen production. SusMat, 2022, 2: 466–475

    Article  CAS  Google Scholar 

  26. Luo Z, Ye X, Zhang S, et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat Commun, 2022, 13: 2230

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi M, Li G, Li J, et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew Chem, 2020, 132: 6652–6657

    Article  ADS  Google Scholar 

  28. Chawla A, Sudhaik A, Sonu A, et al. Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: A review. Coord Chem Rev, 2023, 491: 215246

    Article  CAS  Google Scholar 

  29. Li S, Dong K, Cai M, et al. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience, 2024, 4: 100208

    Google Scholar 

  30. Shi Y, Li J, Huang D, et al. Specific adsorption and efficient degradation of cylindrospermopsin on oxygen-vacancy sites of BiOBr. ACS Catal, 2022, 13: 445–458

    Article  Google Scholar 

  31. Allagui L, Chouchene B, Gries T, et al. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants. Appl Surf Sci, 2019, 490: 580–591

    Article  ADS  CAS  Google Scholar 

  32. Wu J, Li X, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem, 2018, 130: 8855–8859

    Article  ADS  Google Scholar 

  33. Sun X, Li L, Jin S, et al. Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience, 2023, 3: 100095

    Article  Google Scholar 

  34. Li X, Liu T, Zhang Y, et al. Growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater. Adv Fiber Mater, 2022, 4: 1620–1631

    Article  CAS  Google Scholar 

  35. Wang Q, Fang Z, Zhang W, et al. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv Fiber Mater, 2022, 4: 342–360

    Article  CAS  Google Scholar 

  36. Zhang J, Wang X, Shen K, et al. Defect engineering in g-C3N4 quantum-dot-modified TiO2 nanofiber: Uncovering novel mechanisms for the degradation of tetracycline in coexistence with Cu2+. Adv Fiber Mater, 2023, 5: 168–182

    Article  CAS  Google Scholar 

  37. Nishioka S, Hojo K, Xiao L, et al. Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting. Sci Adv, 2022, 8: eadc9115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye S, Li J, Feng Y, et al. Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light. Sci China Mater, 2023, 66: 3146–3154

    Article  CAS  Google Scholar 

  39. Zhang R, Jia X, Liu X, et al. Hierarchical hollow TiO2/In2S3 heterojunction photocatalyst decorated with spatially separated dual co-catalysts for enhanced photocatalytic H2 evolution. Catal Sci Technol, 2023, 13: 5449–5455

    Article  CAS  Google Scholar 

  40. Qi K, Zhuang C, Zhang M, et al. Sonochemical synthesis of photocatalysts and their applications. J Mater Sci Tech, 2022, 123: 243–256

    Article  CAS  Google Scholar 

  41. Zhu B, Sun J, Zhao Y, et al. Construction of 2D S-scheme heterojunction photocatalyst. Adv Mater, 2023, 2310600

  42. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  43. Dong K, Shen C, Yan R, et al. Integration of plasmonic effect and S-scheme heterojunction into Ag/Ag3PO4/C3N5 photocatalyst for boosted photocatalytic levofloxacin degradation. Acta Phys Chim Sin, 2024, 40: 2310013

    Google Scholar 

  44. Li S, Wang C, Dong K, et al. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism. Chin J Catal, 2023, 51: 101–112

    Article  CAS  Google Scholar 

  45. Cai M, Liu Y, Dong K, et al. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin J Catal, 2023, 52: 239–251

    Article  CAS  Google Scholar 

  46. Wang C, You C, Rong K, et al. An S-scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Phys Chim Sin, 2023, 40: 2307045

    Article  Google Scholar 

  47. Wang L, Bie C, Yu J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem, 2022, 4: 973–983

    Article  CAS  Google Scholar 

  48. Wang L, Zhu B, Zhang J, et al. S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2023, 5: 4187–4211

    Article  Google Scholar 

  49. Wang Z, Cheng B, Zhang L, et al. S-scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin J Catal, 2022, 43: 1657–1666

    Article  CAS  Google Scholar 

  50. Wang Z, Wang J, Zhang J, et al. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions. Acta Phys Chim Sin, 2023, 39: 2209037

    Google Scholar 

  51. He X, Wu J, Li K, et al. Z-scheme 2D/2D heterojunction of ZnIn2S4/Ti-BPDC enhancing photocatalytic hydrogen evolution under visible light irradiation. Sci China Mater, 2023, 66: 3155–3164

    Article  CAS  Google Scholar 

  52. Luo C, Long Q, Cheng B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded G-C3N4 and BiOCl for photocatalytic CO2 reduction. Acta Phys Chim Sin, 2023, 39: 2212026

    Article  Google Scholar 

  53. Zhang J, Wang L, Mousavi M, et al. Molecular-level engineering of S-scheme heterojunction: The site-specific role for directional charge transfer. Chin J Struct Chem, 2022, 41: 2206003–2206005

    CAS  Google Scholar 

  54. Zhang H, Liu J, Zhang Y, et al. BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway. J Mater Sci Tech, 2023, 166: 241–249

    Article  Google Scholar 

  55. Zan Z, Li X, Gao X, et al. 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-scheme heterojunction for robust photocatalytic degradation and H2O2 production. Acta Phys Chim Sin, 2022, 39: 2209016

    Article  Google Scholar 

  56. Su B, Zheng M, Lin W, et al. S-scheme Co9S8@Cd0.8Zn0.2 S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater, 2023, 13: 2203290

    Article  CAS  Google Scholar 

  57. Chen G, Zhou Z, Li B, et al. S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. J Environ Sci, 2023, doi: https://doi.org/10.1016/j.jes.2023.05.028

  58. Su B, Huang H, Ding Z, et al. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 124: 164–170

    Article  CAS  Google Scholar 

  59. Ren Y, Li Y, Wu X, et al. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin J Catal, 2021, 42: 69–77

    Article  CAS  Google Scholar 

  60. Zhou L, Li Y, Yang S, et al. Preparation of novel 0D/2D Ag2WO4/WO3 step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chem Eng J, 2021, 420: 130361

    Article  CAS  Google Scholar 

  61. Li RQ, Bian YJ, Yang CM, et al. Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO2 heterostructure. Rare Met, 2023, doi: https://doi.org/10.1007/s12598-023-02471-1

  62. Chen N, Jia X, He H, et al. Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/Ni2P/g-C3N4. Chin J Catal, 2022, 43: 276–287

    Article  CAS  Google Scholar 

  63. Zhang Y, Guo F, Wang K, et al. Precisely modulate interfacial Bi−O bridge bond in Co-TCPP/Bi3O4Br to trigger long-lasting charge separation for boosting CO2 photoreduction. Chem Eng J, 2023, 465: 142663

    Article  CAS  Google Scholar 

  64. Nikoloudakis E, López-Duarte I, Charalambidis G, et al. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem Soc Rev, 2022, 51: 6965–7045

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Zhu Y, Chen X, et al. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater, 2019, 31: 1806626

    Article  Google Scholar 

  66. González-González RB, Sharma A, Parra-Saldívar R, et al. Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J Hazard Mater, 2022, 423: 127145

    Article  PubMed  Google Scholar 

  67. Đorđević L, Arcudi F, Cacioppo M, et al. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat Nanotechnol, 2022, 17: 112–130

    Article  ADS  PubMed  Google Scholar 

  68. Akbar K, Moretti E, Vomiero A. Carbon dots for photocatalytic degradation of aqueous pollutants: Recent advancements. Adv Opt Mater, 2021, 9: 2100532

    Article  CAS  Google Scholar 

  69. Yu H, Shi R, Zhao Y, et al. Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater, 2016, 28: 9454–9477

    Article  CAS  PubMed  Google Scholar 

  70. Xia L, Zhang K, Wang X, et al. 0D/2D Schottky junction synergies with 2D/2D S-scheme heterojunction strategy to achieve uniform separation of carriers in 0D/2D/2D quasi CNQDs/TCN/ZnIn2S4 towards photocatalytic remediating petroleum hydrocarbons polluted marine. Appl Catal B-Environ, 2023, 325: 122387

    Article  CAS  Google Scholar 

  71. Li W, Wang Z, Li Y, et al. Visible-NIR light-responsive 0D/2D CQDs/Sb2WO6 nanosheets with enhanced photocatalytic degradation performance of RhB: Unveiling the dual roles of CQDs and mechanism study. J Hazard Mater, 2022, 424: 127595

    Article  CAS  PubMed  Google Scholar 

  72. Raghavan A, Sarkar S, Nagappagari LR, et al. Decoration of graphene quantum dots on TiO2 nanostructures: Photosensitizer and cocatalyst role for enhanced hydrogen generation. Ind Eng Chem Res, 2020, 59: 13060–13068

    Article  CAS  Google Scholar 

  73. Liu Z, Hou W, Guo H, et al. Functional group modulation in carbon quantum dots for accelerating photocatalytic CO2 reduction. ACS Appl Mater Interfaces, 2023, 15: 33868–33877

    Article  CAS  PubMed  Google Scholar 

  74. Luo H, Guo Q, Szilágyi PÁ, et al. Carbon dots in solar-to-hydrogen conversion. Trends Chem, 2020, 2: 623–637

    Article  CAS  Google Scholar 

  75. Zhang J, Xue J, Wu Z, et al. Superwetting stainless steel mesh decorated with TCPP-doped UiO-66-NH2 with enhanced gravity-driven oil-water separation and visible-light-driven sterilization performance. Appl Surf Sci, 2023, 638: 157993

    Article  CAS  Google Scholar 

  76. Wang K, Du Y, Li Y, et al. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy, 2023, 5: e264

    Article  CAS  Google Scholar 

  77. Wang X, Ren Y, Li Y, et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal. Chemosphere, 2022, 287: 132098

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Xiao T, Chen Y, Liang Y. Ni(II) tetra(4-carboxylphenyl)porphyrin-sensitized TiO2 nanotube array composite for efficient photocatalytic reduction of CO2. J Phys Chem C, 2022, 126: 9742–9752

    Article  CAS  Google Scholar 

  79. Xiong Y, Lin Y, Wang X, et al. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv Powder Mater, 2022, 1: 100033

    Article  Google Scholar 

  80. Zhou XT, Liu XH, Huang XJ, et al. TiO2 nanotube arrays sensitized by copper(II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. J Hazard Mater, 2022, 422: 126869

    Article  CAS  PubMed  Google Scholar 

  81. Fang X, Tang Y, Ma YJ, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci China Mater, 2023, 66: 664–671

    Article  CAS  Google Scholar 

  82. Hao M, Wei D, Li Z. Rational design of an efficient S-scheme heterojunction of CdS/Bi2WO6-S nanocomposites for photocatalytic CO2 reduction. Energy Fuels, 2022, 36: 11524–11531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1809214), the Natural Science Foundation of Zhejiang Province (LY20E080014 and LTGN23E080001), and the Science and Technology Project of Zhoushan (2022C41011).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li S conceived the idea for this work; Li S and Liu Y designed the experiments; Wang C carried out the experiments and material characterizations with support from Rong K; Li S wrote the paper with support from Wang C, Liu Y and Yang F. All authors contributed to the discussion.

Corresponding authors

Correspondence to Yanping Liu  (刘艳萍) or Shijie Li  (李世杰).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Chunchun Wang is currently pursuing her MS degree in marine chemistry at the College of Marine Science and Technology, Zhejiang Ocean University. Her research interests focus on the design and synthesis of nanostructured materials for energy and environmental applications.

Yanping Liu is currently an associate professor at the College of Marine Science and Technology, Zhejiang Ocean University. Her research interests mainly focus on development of fiber-based functional materials for marine environment protection.

Shijie Li received his PhD degree in environmental engineering from Donghua University in 2014. He is currently an associate professor at the National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University. His research interests focus on the design and synthesis of functional nanomaterials for solar energy conversion and environmental remediation.

Supporting Information

40843_2023_2764_MOESM1_ESM.pdf

Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Rong, K., Liu, Y. et al. Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation. Sci. China Mater. 67, 562–572 (2024). https://doi.org/10.1007/s40843-023-2764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2764-8

Keywords

Navigation