Skip to main content
Log in

Self-supporting BiCu/carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate

自支撑BiCu/碳杂化纳米纤维膜高效促进CO2电还原生成甲酸

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

CO2 electroreduction is an alluring technology for high-value CO2 utilization and intermittent electrical energy storage. Self-supporting catalysts with high efficiency have clear advantages over powder ones in electrode construction but still lack effective synthesis methods. In this work, a self-supporting BiCu/carbon hybrid nanofiber membrane (BiCu/CHNM) was synthesized by electrospinning-calcination and employed directly as a working electrode in a flow cell for CO2 electroreduction to formate with a high Faradaic efficiency of 87.67% at a partial current density of 142.9 mA cm−2. In stability tests, the Faradaic efficiency of formate remained at 80% for 50 h at high partial current densities (>100 mA cm−2). In-situ Raman spectra and density functional theory calculations confirmed that copper doping lowers the energy barrier of HCOO formation on the Bi (012) plane and increases the conductivity of the carbon nanofiber network. Due to the well-designed conductive framework and the highly dispersed BiCu active sites, this hybrid membrane shows high activity, high selectivity, and long stability simultaneously.

摘要

二氧化碳电还原有利于二氧化碳高价值利用和间歇性电能的存储, 是一种极具应用前景的新技术. 自支撑催化剂比粉末催化剂在构建电极方面具有明显优势, 但缺乏有效的合成方法. 本研究采用电纺丝-碳化法合成了一种自支撑的BiCu/碳杂化纳米纤维膜(BiCu/CHNM), 可直接用作工作电极在流动池中将二氧化碳还原为甲酸盐, 其法拉第效率为87.67%, 分电流密度为142.9 mA cm−2. 稳定性测试中, 甲酸盐的法拉第效率在高偏电流密度(>100 mA cm−2)下可在50小时内连续保持在80%以上. 原位拉曼光谱和密度泛函理论计算证实, 铜掺杂降低了Bi (012)平面上HCOO形成的能垒, 同时提高了碳纳米纤维网络的导电性. 由于同时具有高导电框架结构和高度分散的BiCu活性位点, 这种杂化膜同时表现出高活性、高选择性和长时间稳定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng T, Zhang M, Wu L, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal, 2022, 5: 388–396

    CAS  Google Scholar 

  2. Zhao Y, Zu X, Chen R, et al. Industrial-current-density CO2-to-C2+ electroreduction by anti-swelling anion-exchange ionomer-modified oxide-derived Cu nanosheets. J Am Chem Soc, 2022, 144: 10446–10454

    CAS  PubMed  Google Scholar 

  3. Wang X, Fei X, Wang M, et al. Regular hexagonal CuBi nanosheets boost highly efficient CO2 reduction to HCOOH in a solid-electrolyte cell. J Mater Chem A, 2022, 10: 23542–23550

    CAS  Google Scholar 

  4. Wang Z, Zhou Y, Liu D, et al. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew Chem Int Ed, 2022, 61: e202200552

    CAS  Google Scholar 

  5. Sui PF, Gao MR, Liu S, et al. Carbon dioxide valorization via formate electrosynthesis in a wide potential window. Adv Funct Mater, 2022, 32: 2203794

    CAS  Google Scholar 

  6. Qiu XF, Huang JR, Yu C, et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew Chem Int Ed, 2022, 61: e202206470

    ADS  CAS  Google Scholar 

  7. Li Y, Zhang K, Yu Y, et al. Pd homojunctions enable remarkable CO2 electroreduction. Chem Commun, 2022, 58: 387–390

    CAS  Google Scholar 

  8. Pardo Pérez LC, Arndt A, Stojkovikj S, et al. Determining structure-activity relationships in oxide derived Cu−Sn catalysts during CO2 electroreduction using X-ray spectroscopy. Adv Energy Mater, 2022, 12: 2103328

    Google Scholar 

  9. Wulan B, Zhao L, Tan D, et al. Electrochemically driven interfacial transformation for high-performing solar-to-fuel electrocatalytic conversion. Adv Energy Mater, 2022, 12: 2103960

    CAS  Google Scholar 

  10. Wang S, Qian Z, Huang Q, et al. Industrial-level CO2 electroreduction using solid-electrolyte devices enabled by high-loading nickel atomic site catalysts. Adv Energy Mater, 2022, 12: 2201278

    CAS  Google Scholar 

  11. Chen Z, Zhang X, Liu W, et al. Amination strategy to boost the CO2 electroreduction current density of M−N/C single-atom catalysts to the industrial application level. Energy Environ Sci, 2021, 14: 2349–2356

    CAS  Google Scholar 

  12. Wang P, Yang H, Tang C, et al. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C−C coupling. Nat Commun, 2022, 13: 3754

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim C, Cho KM, Park K, et al. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv Funct Mater, 2021, 31: 2102142

    CAS  Google Scholar 

  14. Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat Catal, 2020, 3: 804–812

    CAS  Google Scholar 

  15. Zhang J, Wang Y, Li Z, et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv Sci, 2022, 9: 2200454

    CAS  Google Scholar 

  16. Chen C, Khosrowabadi Kotyk JF, Sheehan SW. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem, 2018, 4: 2571–2586

    CAS  Google Scholar 

  17. Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res, 2018, 57: 2165–2177

    CAS  Google Scholar 

  18. Li Z, Gao Y, Meng X, et al. In-situ-derived self-selective electrocatalysts for solar formate production from simultaneous CO2 reduction and methanol oxidation. Cell Rep Phys Sci, 2022, 3: 100972

    CAS  Google Scholar 

  19. Jia L, Sun M, Xu J, et al. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew Chem Int Ed, 2021, 60: 21741–21745

    CAS  Google Scholar 

  20. Zu MY, Zhang L, Wang C, et al. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J Mater Chem A, 2018, 6: 16804–16809

    CAS  Google Scholar 

  21. Yang W, Si C, Zhao Y, et al. Activating inert antimony for selective CO2 electroreduction to formate via bimetallic interactions. Appl Catal B-Environ, 2022, 316: 121619

    CAS  Google Scholar 

  22. Wei Q, Qin J, Jia G, et al. Dealloying-derived nanoporous bismuth for selective CO2 electroreduction to formate. J Phys Chem Lett, 2022, 13: 9058–9065

    CAS  PubMed  Google Scholar 

  23. Xie Y, Ou P, Wang X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal, 2022, 5: 564–570

    CAS  Google Scholar 

  24. Ozden A, Li J, Kandambeth S, et al. Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. Nat Energy, 2023, 8: 179–190

    ADS  CAS  Google Scholar 

  25. Zhou Y, Yao Y, Zhao R, et al. Stabilization of Cu+via strong electronic interaction for selective and stable CO2 electroreduction. Angew Chem Int Ed, 2022, 61: e202205832

    ADS  CAS  Google Scholar 

  26. Zhang B, Chen S, Wulan B, et al. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem Eng J, 2021, 421: 130003

    CAS  Google Scholar 

  27. Wu D, Wang X, Fu XZ, et al. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl Catal B-Environ, 2021, 284: 119723

    CAS  Google Scholar 

  28. Wang H, Jia J, Song P, et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angew Chem Int Ed, 2017, 56: 7847–7852

    CAS  Google Scholar 

  29. Xu YZ, Yuan CZ, Chen XP. One-pot synthesis nickel sulfide/amorphous molybdenum sulfide nanosheets array on nickel foam as a robust oxygen evolution reaction electrocatalyst. J Solid State Chem, 2017, 256: 124–129

    ADS  CAS  Google Scholar 

  30. Yang C, Hu Y, Li S, et al. Self-supporting Bi−Sb bimetallic nanoleaf for electrochemical synthesis of formate by highly selective CO2 reduction. ACS Appl Mater Interfaces, 2023, 15: 6942–6950

    CAS  PubMed  Google Scholar 

  31. Wang X, Wu D, Kang X, et al. Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. J Energy Chem, 2022, 71: 159–166

    CAS  Google Scholar 

  32. Li Z, Sun B, Xiao D, et al. Electron-rich Bi nanosheets promote CO2-formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew Chem Int Ed, 2023, 62: e202217569

    CAS  Google Scholar 

  33. Chang S, Xuan Y, Duan J, et al. High-performance electroreduction CO2 to formate at Bi/Nafion interface. Appl Catal B-Environ, 2022, 306: 121135

    CAS  Google Scholar 

  34. Yang H, Lin Q, Wu Y, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy, 2020, 70: 104454

    CAS  Google Scholar 

  35. Yang H, Lin Q, Zhang C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat Commun, 2020, 11: 593

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc, 2019, 141: 12717–12723

    CAS  PubMed  Google Scholar 

  37. Wang W, Ma Z, Fei X, et al. Joint tuning the morphology and oxygen vacancy of Cu2O by ionic liquid enables high-efficient CO2 reduction to C2 products. Chem Eng J, 2022, 436: 135029

    CAS  Google Scholar 

  38. Sheng ZH, Shao L, Chen JJ, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5: 4350–4358

    CAS  PubMed  Google Scholar 

  39. Kudin KN, Ozbas B, Schniepp HC, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8: 36–41

    ADS  CAS  PubMed  Google Scholar 

  40. Shi MM, Bao D, Li SJ, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater, 2018, 8: 1800124

    ADS  Google Scholar 

  41. Shang Y, Chen C, Zhang P, et al. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chem Eng J, 2019, 375: 122004

    CAS  Google Scholar 

  42. Zhang Y, Li F, Zhang X, et al. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J Mater Chem A, 2018, 6: 4714–4720

    CAS  Google Scholar 

  43. Wang W, Ning H, Yang Z, et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4. Electrochim Acta, 2019, 306: 360–365

    CAS  Google Scholar 

  44. Zhao Y, Liu X, Liu Z, et al. Spontaneously Sn-doped Bi/BiOx core–shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett, 2021, 21: 6907–6913

    ADS  CAS  PubMed  Google Scholar 

  45. Lin L, He X, Zhang X, et al. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew Chem Int Ed, 2023, 62: e202214959

    CAS  Google Scholar 

  46. Dutta A, Zelocualtecatl Montiel I, Kiran K, et al. A tandem (Bi2O3 → Bimet) catalyst for highly efficient ec-CO2 conversion into formate: Operando Raman spectroscopic evidence for a reaction pathway change. ACS Catal, 2021, 11: 4988–5003

    CAS  Google Scholar 

  47. Wu Z, Wu H, Cai W, et al. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew Chem Int Ed, 2021, 60: 12554–12559

    CAS  Google Scholar 

  48. Ren H, Wang X, Zhou X, et al. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects. J Energy Chem, 2023, 79: 263–271

    CAS  Google Scholar 

  49. Zhang W, Huang C, Xiao Q, et al. A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J Am Chem Soc, 2020, 142: 11417–11427

    CAS  PubMed  Google Scholar 

  50. Liu P, Hensen EJM. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc, 2013, 135: 14032–14035

    CAS  PubMed  Google Scholar 

  51. Yang D, Zhu Q, Chen C, et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat Commun, 2019, 10: 677

    ADS  PubMed  PubMed Central  Google Scholar 

  52. Li H, Su Z, Hu S, et al. Free-standing and flexible Cu/Cu2O/CuO heterojunction net: A novel material as cost-effective and easily recycled visible-light photocatalyst. Appl Catal B-Environ, 2017, 207: 134–142

    CAS  Google Scholar 

  53. Choi J, Oh H, Han SW, et al. Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Curr Appl Phys, 2017, 17: 137–145

    ADS  Google Scholar 

  54. Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537: 382–386

    ADS  CAS  PubMed  Google Scholar 

  55. Gao S, Sun Z, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun, 2017, 8: 14503

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Albo J, Perfecto-Irigaray M, Beobide G, et al. Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. J CO2 Utilization, 2019, 33: 157–165

    CAS  Google Scholar 

  57. Deng P, Yang F, Wang Z, et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew Chem Int Ed, 2020, 59: 10807–10813

    CAS  Google Scholar 

  58. Duan YX, Liu KH, Zhang Q, et al. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods, 2020, 4: 1900846

    CAS  Google Scholar 

  59. Kong Y, Jiang X, Li X, et al. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity. Chinese J Catal, 2023, 45: 95–106

    CAS  Google Scholar 

  60. Niu ZZ, Gao FY, Zhang XL, et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J Am Chem Soc, 2021, 143: 8011–8021

    CAS  PubMed  Google Scholar 

  61. Pan Z, Wang K, Ye K, et al. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal, 2020, 10: 3871–3880

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52072409), the Major Scientific and Technological Innovation Project of Shandong Province (2020CXGC010403), and Taishan Scholar Project of Shandong Province of China (ts201712020).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Song D designed the samples and conducted the experiments; Zhang S analyzed and plotted the experimental data; Ning H provided theoretical guidance and financial support; Fei X provided theoretical calculations; Wang M and Wang X provided software support; Wu W and Zhao Q supervised the experiments; Li Y proposed the project; Wu M revised the paper; Song D and Ning H wrote the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Hui Ning  (宁汇) or Mingbo Wu  (吴明铂).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Dewen Song received his BS degree in energy chemical engineering from the Northeast Petroleum University in 2021. He is pursuing an MS degree at the College of Chemistry and Chemical Engineering, China University of Petroleum (East China). His research interest is the preparation of self-supporting catalysts for electroreduction of CO2.

Hui Ning is an associate professor at the College of Chemistry and Chemical Engineering, China University of Petroleum (East China). He received his PhD degree in 2013 from the Institute of Chemistry, Chinese Academy of Sciences. His research interests mainly focus on CCUS, carbon materials and energy chemical engineering.

Mingbo Wu is a professor at the College of New Energy, China University of Petroleum (East China). He received his PhD degree in 2004 from the Department of Chemical Engineering, Dalian University of Technology. His research interests mainly focus on the high value-added utilization of heavy oil and carbon materials and their applications in energy storage, catalysis, environmental protection.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Zhang, S., Ning, H. et al. Self-supporting BiCu/carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate. Sci. China Mater. 67, 788–795 (2024). https://doi.org/10.1007/s40843-023-2742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2742-9

Keywords

Navigation