Skip to main content
Log in

Lightweight Al-based entropy alloys: Overview and future trend

轻质铝基熵合金: 概述与未来趋势

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The emergence of a new generation of alloys, namely high-entropy alloys, has revealed the significance of the entropy effect in alloy design. Inspired by this concept, lightweight Al-based entropy alloys have been proposed recently. With increasing demand for low-density structural materials, these new alloys have significant potential for diverse applications. This review provides an overview of lightweight Al-based entropy alloys, covering their developmental background, design principles, fabrication methods, microstructures, and mechanical properties, as well as alloys suitable for high-temperature applications. A comprehensive investigation of current research on Al-based entropy alloys with a density lower than 4.0 g cm−3 was conducted from 122 different alloys. Lightweight Al-based entropy alloys could bridge the gap between conventional Al and Ti alloys in terms of mechanical properties and density. The excellent thermal stabilities of these alloys make them attractive structural materials for use at elevated temperatures. In addition, machine learning has been suggested as an effective computational tool for alloy development. Finally, future trends in the field of lightweight Al-based entropy alloys are discussed.

摘要

新一代合金——高熵合金的出现, 揭示了熵效应在合金设计中的 重要意义. 受这一概念的启发, 轻质铝基熵合金这一概念被提出. 随着 对低密度结构材料的需求不断增加, 这些新型合金在各种应用中具有 巨大的潜力. 本文综述了轻质铝基熵合金的发展背景、设计原理、制 造方法、微观结构和力学性能、高温应用, 及其发展前景. 通过对当前 研究的全面调查, 本文重点研究分析了122种密度低于4.0 g cm−3的铝基 熵合金. 轻质铝基熵合金可以弥补传统铝和钛合金在机械性能和密度 方面的差距. 轻质铝基熵合金优异的热稳定性使其有望成为在高温下 使用的结构材料. 此外, 本文还讨论了轻质铝基熵合金领域的未来发展 趋势. 机器学习作为有效计算工具, 可以极大地提高合金的开发效率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature, 2019, 575: 64–74

    Article  CAS  Google Scholar 

  2. Hirsch J. Aluminium in innovative light-weight car design. Mater Trans, 2011, 52: 818–824

    Article  CAS  Google Scholar 

  3. Zhang W, Xu J. Advanced lightweight materials for automobiles: A review. Mater Des, 2022, 221: 110994

    Article  CAS  Google Scholar 

  4. Mouritz AP. Introduction to Aerospace Materials. Cambridge: Woodhead Publishing Limited, 2012

    Book  Google Scholar 

  5. Hu P, Liu K, Pan L, et al. Effect of Mg microalloying on elevated-temperature creep resistance of Al-Cu 224 cast alloys. Mater Sci Eng-A, 2022, 851: 143649

    Article  CAS  Google Scholar 

  6. Poplawsky JD, Milligan BK, Allard LF, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater, 2020, 194: 577–586

    Article  CAS  Google Scholar 

  7. Ma L, Zhang X, Duan Y, et al. Achieving exceptional high-temperature resistant Al matrix composites via two-dimensional BN pinning grain rotation. Compos Part B-Eng, 2023, 253: 110570

    Article  CAS  Google Scholar 

  8. Hu P, Liu K, Pan L, et al. Effect of Mg on elevated-temperature low cycle fatigue and thermo-mechanical fatigue behaviors of Al-Cu cast alloys. Mater Sci Eng-A, 2023, 885: 145588

    Article  CAS  Google Scholar 

  9. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  CAS  Google Scholar 

  10. Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218

    Article  Google Scholar 

  11. Wang YP, Li BS, Ren MX, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng-A, 2008, 491: 154–158

    Article  Google Scholar 

  12. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

    Article  CAS  Google Scholar 

  13. Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150

    Article  CAS  Google Scholar 

  14. Yao K, Liu L, Ren J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scripta Mater, 2021, 194: 113674

    Article  CAS  Google Scholar 

  15. Feng R, Gao MC, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy. Acta Mater, 2018, 146: 280–293

    Article  CAS  Google Scholar 

  16. Cui L, Zhang Z, Chen XG. Development of lightweight Al-based entropy alloys for elevated temperature applications. J Alloys Compd, 2023, 938: 168619

    Article  CAS  Google Scholar 

  17. Huang EW, Yu D, Yeh JW, et al. A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scripta Mater, 2015, 101: 32–35

    Article  CAS  Google Scholar 

  18. Asadikiya M, Yang S, Zhang Y, et al. A review of the design of high-entropy aluminum alloys: A pathway for novel Al alloys. J Mater Sci, 2021, 56: 12093–12110

    Article  CAS  Google Scholar 

  19. Cai Z, Guo Y, Liu J, et al. Progress in light-weight high entropy alloys. J Wuhan Univ Technol-Mat Sci Edit, 2021, 36: 737–753

    Article  Google Scholar 

  20. Sun W, Huang X, Luo AA. Phase formations in low density high entropy alloys. Calphad, 2017, 56: 19–28

    Article  CAS  Google Scholar 

  21. Li Y, Zhang Y. Light-weight and flexible high-entropy alloys. In: Sharma A, Kumar S, Duriagina Z (Eds). Engineering Steels and High Entropy-Alloys. London: IntechOpen, 2020

    Google Scholar 

  22. Ji C, Ma A, Jiang J. Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys. J Alloys Compd, 2022, 900: 163508

    Article  CAS  Google Scholar 

  23. Li R, Ren Z, Wu Y, et al. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al-Zn-Li-Mg-Cu alloy. Mater Sci Eng-A, 2021, 802: 140637

    Article  CAS  Google Scholar 

  24. Tseng KK, Yang YC, Juan CC, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Tech Sci, 2018, 61: 184–188

    Article  CAS  Google Scholar 

  25. Youssef KM, Zaddach AJ, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nano-crystalline structures. Mater Res Lett, 2015, 3: 95–99

    Article  CAS  Google Scholar 

  26. Wang Z, Chen S, Yang S, et al. Light-weight refractory high-entropy alloys: A comprehensive review. J Mater Sci Tech, 2023, 151: 41–65

    Article  CAS  Google Scholar 

  27. Sanchez JM, Vicario I, Albizuri J, et al. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. J Mater Res Tech, 2019, 8: 795–803

    Article  CAS  Google Scholar 

  28. Kumar A, Gupta M. An insight into evolution of light weight high entropy alloys: A review. Metals, 2016, 6: 199

    Article  CAS  Google Scholar 

  29. Yeh JW. Recent progress in high-entropy alloys. Ann Chim Sci Mat, 2006, 31: 633–648

    Article  CAS  Google Scholar 

  30. Gao MC, Yeh JW, Liaw PK, et al. High-Entropy Alloys: Fundamentals and Applications. Cham: Springer Cham, 2016

    Book  Google Scholar 

  31. Miracle D, Miller J, Senkov O, et al. Exploration and development of high entropy alloys for structural applications. Entropy, 2014, 16: 494–525

    Article  CAS  Google Scholar 

  32. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759–1771

    Article  CAS  Google Scholar 

  33. George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater, 2020, 188: 435–474

    Article  CAS  Google Scholar 

  34. Gorsse S, Tancret F. Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J Mater Res, 2018, 33: 2899–2923

    Article  CAS  Google Scholar 

  35. Maulik O, Kumar D, Kumar S, et al. Structure and properties of lightweight high entropy alloys: A brief review. Mater Res Express, 2018, 5: 052001

    Article  Google Scholar 

  36. Kao YF, Chen SK, Sheu JH, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int J Hydrogen Energy, 2010, 35: 9046–9059

    Article  CAS  Google Scholar 

  37. Gorban VF, Krapivka NA, Firstov SA. High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties. Phys Met Metallogr, 2017, 118: 970–981

    Article  CAS  Google Scholar 

  38. Li D, Dong Y, Zhang Z, et al. An as-cast Ti-V-Cr-Al light-weight medium entropy alloy with outstanding tensile properties. J Alloys Compd, 2021, 877: 160199

    Article  CAS  Google Scholar 

  39. Qiu Y, Hu YJ, Taylor A, et al. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater, 2017, 123: 115–124

    Article  CAS  Google Scholar 

  40. Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574: 223–227

    Article  CAS  Google Scholar 

  41. Wang H, He QF, Yang Y. High-entropy intermetallics: From alloy design to structural and functional properties. Rare Met, 2022, 41: 1989–2001

    Article  CAS  Google Scholar 

  42. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater, 2013, 61: 4887–4897

    Article  CAS  Google Scholar 

  43. Dąbrowa J, Kucza W, Cieślak G, et al. Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations. J Alloys Compd, 2016, 674: 455–462

    Article  Google Scholar 

  44. Beke DL, Erdélyi G. On the diffusion in high-entropy alloys. Mater Lett, 2016, 164: 111–113

    Article  CAS  Google Scholar 

  45. Vaidya M, Trubel S, Murty BS, et al. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J Alloys Compd, 2016, 688: 994–1001

    Article  CAS  Google Scholar 

  46. Zhang C, Zhang F, Jin K, et al. Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J Phase Equilib Diffus, 2017, 38: 434–444

    Article  Google Scholar 

  47. Li Z, Zhao S, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci, 2019, 102: 296–345

    Article  CAS  Google Scholar 

  48. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61: 2–22

    Article  CAS  Google Scholar 

  49. Tun KS, Charadva V, Gupta M. Lightweight medium entropy magnesium alloy with exceptional compressive strength and ductility combination. J Materi Eng Perform, 2021, 30: 2422–2432

    Article  CAS  Google Scholar 

  50. Shao L, Zhang T, Li L, et al. A low-cost lightweight entropic alloy with high strength. J Materi Eng Perform, 2018, 27: 6648–6656

    Article  CAS  Google Scholar 

  51. Liao YC, Li TH, Tsai PH, et al. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100−x medium-entropy alloys. Intermetallics, 2020, 117: 106673

    Article  CAS  Google Scholar 

  52. Zhang Y, Zhou Y, Lin J, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  CAS  Google Scholar 

  53. Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013, 41: 96–103

    Article  Google Scholar 

  54. Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys, 2011, 109: 103505

    Article  Google Scholar 

  55. Couzinié JP, Dirras G. Body-centered cubic high-entropy alloys: From processing to underlying deformation mechanisms. Mater Charact, 2019, 147: 533–544

    Article  Google Scholar 

  56. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238

    Article  CAS  Google Scholar 

  57. Yang X, Chen SY, Cotton JD, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM, 2014, 66: 2009–2020

    Article  CAS  Google Scholar 

  58. Heydari H, Tajally M, Habibolahzadeh A. Computational analysis of novel AlLiMgTiX light high entropy alloys. Mater Chem Phys, 2022, 280: 125834

    Article  CAS  Google Scholar 

  59. Heydari H, Tajally M, Habibolahzadeh A. Calculations to introduce some light high entropy alloys based on phase formation rules. J Alloys Compd, 2022, 912: 165222

    Article  CAS  Google Scholar 

  60. Chauhan P, Yebaji S, Nadakuduru VN, et al. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. J Alloys Compd, 2020, 820: 153367

    Article  CAS  Google Scholar 

  61. Kaufman L, Ågren J. CALPHAD, first and second generation—Birth of the materials genome. Scripta Mater, 2014, 70: 3–6

    Article  CAS  Google Scholar 

  62. Baek EJ, Ahn TY, Jung JG, et al. Effects of ultrasonic melt treatment and solution treatment on the microstructure and mechanical properties of low-density multicomponent Al70Mg10Si10Cu5Zn5 alloy. J Alloys Compd, 2017, 696: 450–459

    Article  CAS  Google Scholar 

  63. Asadikiya M, Zhang Y, Wang L, et al. Design of ternary high-entropy aluminum alloys (HEAls). J Alloys Compd, 2022, 891: 161836

    Article  CAS  Google Scholar 

  64. Sanchez JM, Pascual A, Vicario I, et al. Microstructure and phase formation of novel Al80Mg5Sn5Zn5X5 light-weight complex concentrated aluminum alloys. Metals, 2021, 11: 1944

    Article  CAS  Google Scholar 

  65. Gobernik A, Lemay CM, Haddad JG. Modelling and testing aluminum based high entropy alloys. Technological Report. Worcester: Worcester Polytechnic Institute, 2018

    Google Scholar 

  66. Ahn TY, Jung JG, Baek EJ, et al. Temperature dependence of precipitation behavior of Al-6Mg-9Si-10Cu-10Zn-3Ni natural composite and its impact on mechanical properties. Mater Sci Eng-A, 2017, 695: 45–54

    Article  CAS  Google Scholar 

  67. Sanchez JM, Vicario I, Albizuri J, et al. Design, microstructure and mechanical properties of cast medium entropy aluminium alloys. Sci Rep, 2019, 9: 6792

    Article  Google Scholar 

  68. Bilbao Y, Trujillo JJ, Vicario I, et al. X-ray thermo-diffraction study of the aluminum-based multicomponent alloy Al58Zn28Si8Mg6. Materials, 2022, 15: 5056

    Article  CAS  Google Scholar 

  69. Kim JH, Jung JG, Baek EJ, et al. Microstructures and mechanical properties of multiphase-reinforced in situ aluminum matrix composites. Met Mater Int, 2019, 25: 353–363

    Article  CAS  Google Scholar 

  70. Li Y, Li R, Zhang Y. Effects of Si addition on microstructure, properties and serration behaviors of lightweight Al-Mg-Zn-Cu medium-entropy alloys. Res Appl Mater Sci, 2019, 1: 13–22

    Article  Google Scholar 

  71. Feng R, Zhang C, Gao MC, et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun, 2021, 12: 4329

    Article  CAS  Google Scholar 

  72. Wen J, Liu Y, Huang Y, et al. Effects of electromagnetic stirring and subsequent homogenization treatment on the microstructure and mechanical properties of Al70Zn10Mg10Cu5Si5 multi-component alloy. J Alloys Compd, 2023, 960: 170725

    Article  CAS  Google Scholar 

  73. Li R, Wang Z, Guo Z, et al. Graded microstructures of Al-Li-Mg-Zn-Cu entropic alloys under supergravity. Sci China Mater, 2019, 62: 736–744

    Article  CAS  Google Scholar 

  74. Sahin H, Zengin H. Microstructure, mechanical and wear properties of low-density cast medium and high entropy aluminium alloys. Inter Metalcast, 2022, 16: 1976–1984

    Article  CAS  Google Scholar 

  75. Xie Y, Meng X, Zang R, et al. Deformation-driven modification towards strength-ductility enhancement in Al-Li-Mg-Zn-Cu lightweight high-entropy alloys. Mater Sci Eng-A, 2022, 830: 142332

    Article  CAS  Google Scholar 

  76. Chen ZP, Yu H, Wu Y, et al. Nano-network mediated high strength and large plasticity in an Al-based alloy. Mater Lett, 2012, 84: 59–62

    Article  Google Scholar 

  77. Li Z, Li X, Huang Z, et al. Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Mater, 2022, 225: 117569

    Article  CAS  Google Scholar 

  78. Singh N, Shadangi Y, Mukhopadhyay NK. Phase evolution and thermal stability of low-density mgalsicrfe high-entropy alloy processed through mechanical alloying. Trans Ind Inst Met, 2020, 73: 2377–2386

    Article  CAS  Google Scholar 

  79. Singh N, Shadangi Y, Goud GS, et al. Fabrication of mgalsicrfe low-density high-entropy alloy by mechanical alloying and spark plasma sintering. Trans Ind Inst Met, 2021, 74: 2203–2219

    Article  CAS  Google Scholar 

  80. Wu S, Zhu B, Jiang W, et al. Hot deformation behavior and micro-structure evolution of a novel Al-Zn-Mg-Li-Cu alloy. Materials, 2022, 15: 6769

    Article  CAS  Google Scholar 

  81. Cui L, Zhang Z, Chen XG. Microstructure and mechanical properties of novel Al-Cu-Mg-Zn lightweight entropy alloys for elevated-temperature applications. Mater Charact, 2023, 200: 112927

    Article  CAS  Google Scholar 

  82. Kim IS, Song MY, Kim JH. Effects of Ti-B and Si additions on microstructure and mechanical properties of Al-Cu-Mg based aluminum matrix composites. J Alloys Compd, 2020, 832: 154827

    Article  CAS  Google Scholar 

  83. Sadeghi M, Niroumand B. Design and characterization of a novel MgAlZnCuMn low melting point light weight high entropy alloy (LMLW-HEA). Intermetallics, 2022, 151: 107658

    Article  CAS  Google Scholar 

  84. Li R, Gao JC, Fan K. Microstructure and mechanical properties of mgmnalzncu high entropy alloy cooling in three conditions. Mater Sci Forum, 2011, 686: 235–241

    Article  CAS  Google Scholar 

  85. Jiang W, Tao S, Qiu H, et al. Precipitation transformation and strengthening mechanism of droplet ejection lightweight medium-entropy AlZnMgCuLi alloy. J Alloys Compd, 2022, 922: 166152

    Article  CAS  Google Scholar 

  86. Li R, Li X, Ma J, et al. Sub-grain formation in Al-Li-Mg-Zn-Cu lightweight entropic alloy by ultrasonic hammering. Intermetallics, 2020, 121: 106780

    Article  CAS  Google Scholar 

  87. Zhang B, Liaw PK, Brechtl J, et al. Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J Alloys Compd, 2020, 820: 153092

    Article  CAS  Google Scholar 

  88. Hu Y, Liu Y, Zhao L, et al. Investigation on microstructures and properties of semi-solid Al80Mg5Li5Zn5Cu5 light-weight high-entropy alloy during isothermal heat treatment process. China Foundry, 2022, 19: 519–527

    Article  Google Scholar 

  89. Srivatsan TS, Gupta M. High Entropy Alloys: Innovations, Advances, and Applications. Boca Raton: CRC Press, 2020

    Book  Google Scholar 

  90. Roy A, Babuska T, Krick B, et al. Machine learned feature identification for predicting phase and Young’s modulus of low-, medium-and high-entropy alloys. Scripta Mater, 2020, 185: 152–158

    Article  CAS  Google Scholar 

  91. Chaskis S, Stachouli E, Gavalas E, et al. Microstructure, phase formation and heat-treating of novel cast Al-Mg-Zn-Cu-Si lightweight complex concentrated aluminum based alloy. Materials, 2022, 15: 3169

    Article  CAS  Google Scholar 

  92. Kilmametov A, Kulagin R, Mazilkin A, et al. High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scripta Mater, 2019, 158: 29–33

    Article  CAS  Google Scholar 

  93. Nguyen NTC, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh highstrain-rate superplasticity in a nanostructured high-entropy alloy. Nat Commun, 2020, 11: 2736

    Article  CAS  Google Scholar 

  94. Huang Y, Wen J, Liu Y, et al. Effects of electromagnetic frequency on the microstructure and mechanical properties of Al70Zn10Mg10Cu5Si5 medium entropy alloy. J Mater Res Tech, 2022, 17: 3105–3117

    Article  CAS  Google Scholar 

  95. Seo N, Jeon J, Lee SH, et al. Revealing complex precipitation behavior of multicomponent Al83Zn5Cu5Mg5Li2 alloy. J Alloys Compd, 2023, 944: 169192

    Article  CAS  Google Scholar 

  96. Ashby MF. Materials Selection in Mechanical Design. Burlington: Elsevier Ltd., 2011

    Google Scholar 

  97. Leng L, Zhang ZJ, Duan QQ, et al. Improving the fatigue strength of 7075 alloy through aging. Mater Sci Eng-A, 2018, 738: 24–30

    Article  CAS  Google Scholar 

  98. Zou Y, Wu X, Tang S, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J Mater Sci Tech, 2021, 85: 106–117

    Article  CAS  Google Scholar 

  99. Jeon C, Kim CP, Joo SH, et al. High tensile ductility of Ti-based amorphous matrix composites modified from conventional Ti-6Al-4V titanium alloy. Acta Mater, 2013, 61: 3012–3026

    Article  CAS  Google Scholar 

  100. Polmear IJ, Couper MJ. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metall Trans A, 1988, 19: 1027–1035

    Article  Google Scholar 

  101. Awe SA. Elevated temperature tensile properties of a ternary eutectic Al-27%Cu-5%Si cast alloy. Int J Lightweight Mater Manufact, 2021, 4: 18–26

    CAS  Google Scholar 

  102. Awe SA, Seifeddine S, E. W. A Jarfors, et al. Development of new Al-Cu-Si alloys for high temperature performance. Adv Mater Lett, 2017, 8: 695–701

    Article  CAS  Google Scholar 

  103. Ahn TY, Jung JG, Baek EJ, et al. Temporal evolution of precipitates in multicomponent Al-6Mg-9Si-10Cu-10Zn-3Ni alloy studied by complementary experimental methods. J Alloys Compd, 2017, 701: 660–668

    Article  CAS  Google Scholar 

  104. Cui L, Zhang Z, Sarkar DK, et al. A study on aluminum-based lightweight entropic alloys with high strength at elevated temperature. In: Proceedings of the 61st Conference of Metallurgists. Cham: Springer, 2022. 413–423

    Google Scholar 

  105. Cui L, Liu K, Zhang Z, et al. Enhanced elevated-temperature mechanical properties of hot-rolled Al-Cu alloys: Effect of zirconium addition and homogenization. J Mater Sci, 2023, 58: 11424–11439

    Article  CAS  Google Scholar 

  106. Ibrahim PA, Özkul 1, Canbay CA. An overview of high-entropy alloys. emergent mater, 2022, 5: 1779–1796

    Article  Google Scholar 

  107. Luo AA, Sachdev AK, Apelian D. Alloy development and process innovations for light metals casting. J Mater Process Technol, 2022, 306: 117606

    Article  CAS  Google Scholar 

  108. Zhang H, Fu H, Zhu S, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater, 2021, 215: 117118

    Article  CAS  Google Scholar 

  109. Dai D, Xu T, Wei X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comput Mater Sci, 2020, 175: 109618

    Article  CAS  Google Scholar 

  110. Wang AYT, Murdock RJ, Kauwe SK, et al. Machine learning for materials scientists: An introductory guide toward best practices. Chem Mater, 2020, 32: 4954–4965

    Article  CAS  Google Scholar 

  111. Kaufmann K, Vecchio KS. Searching for high entropy alloys: A machine learning approach. Acta Mater, 2020, 198: 178–222

    Article  CAS  Google Scholar 

  112. Liu X, Xu P, Zhao J, et al. Material machine learning for alloys: Applications, challenges and perspectives. J Alloys Compd, 2022, 921: 165984

    Article  CAS  Google Scholar 

  113. Liu Y, Zhao T, Ju W, et al. Materials discovery and design using machine learning. J Materiomics, 2017, 3: 159–177

    Article  Google Scholar 

  114. Wu L, Wei G, Wang G, et al. Creating win-wins from strength-ductility trade-off in multi-principal element alloys by machine learning. Mater Today Commun, 2022, 32: 104010

    Article  CAS  Google Scholar 

  115. Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning. Int J Fatigue, 2022, 157: 106716

    Article  CAS  Google Scholar 

  116. Jaafreh R, Chaudry UM, Hamad K, et al. Age-hardening behavior guided by the multi-objective evolutionary algorithm and machine learning. J Alloys Compd, 2022, 893: 162104

    Article  CAS  Google Scholar 

  117. Jiang L, Wang C, Fu H, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J Mater Sci Tech, 2022, 98: 33–43

    Article  CAS  Google Scholar 

  118. Li H, Li X, Li Y, et al. Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength. Mater Des, 2023, 225: 111483

    Article  CAS  Google Scholar 

  119. Juan Y, Niu G, Jiang H, et al. Machine learning-assisted design of Al-Zn-Mg-Cu alloys with dramatically enhanced combination of mechanical strength and plasticity. SSRN J, 2022, doi: https://doi.org/10.2139/ssrn.4244660

  120. Pei Z, Yin J, Liaw PK, et al. Toward the design of ultrahigh-entropy alloys via mining six million texts. Nat Commun, 2023, 14: 54

    Article  CAS  Google Scholar 

  121. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci, 2018, 150: 230–235

    Article  CAS  Google Scholar 

  122. Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater, 2020, 185: 528–539

    Article  CAS  Google Scholar 

  123. Yan Y, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning. Comput Mater Sci, 2021, 199: 110723

    Article  CAS  Google Scholar 

  124. Euh K, Jung JG, Baek EJ, et al. Effect of heat-treatment on microstructure and mechanical properties of sonicated multicomponent AlMgSiCuZn alloy. In Light Metals, 2017: 379–383

  125. Huang Z, Dai Y, Li Z, et al. Investigation on surface morphology and crystalline phase deformation of Al80Li5Mg5Zn5Cu5 high-entropy alloy by ultra-precision cutting. Mater Des, 2020, 186: 108367

    Article  CAS  Google Scholar 

  126. Wang N, Wu B, Wu W, et al. Microstructure and properties of aluminium-high entropy alloy composites fabricated by mechanical alloying and spark plasma sintering. Mater Today Commun, 2020, 25: 101366

    Article  CAS  Google Scholar 

  127. Yang X, Zhang H, Dong P, et al. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites. Mater Charact, 2022, 183: 111646

    Article  CAS  Google Scholar 

  128. Lu T, Scudino S, Chen W, et al. The influence of nanocrystalline CoNiFeAl0.4Tia6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Mater Sci Eng-A, 2018, 726: 126–136

    Article  CAS  Google Scholar 

  129. Shadangi Y, Chattopadhyay K, Mukhopadhyay NK. Powder metallurgical processing of Al matrix composite reinforced with Al-SiCrMnFeNiCu high-entropy alloys: Microstructure, thermal stability, and microhardness. J Mater Res, 2023, 38: 248–264

    Article  CAS  Google Scholar 

  130. Sudha P, Tun KS, Gupta M, et al. Electrochemical characterization of a novel multicomponent Al75Mg5Li10Zn5Cu5 low entropy alloy in different pH environments. Mater Corrosion, 2022, 73: 2071–2083

    Article  CAS  Google Scholar 

  131. Xie Y, Meng X, Mao D, et al. Deformation-driven modification of Al-Li-Mg-Zn-Cu high-alloy aluminum as anodes for primary aluminum-air batteries. Scripta Mater, 2022, 212: 114551

    Article  CAS  Google Scholar 

  132. Kairy SK, Rometsch PA, Davies CHJ, et al. On the intergranular corrosion and hardness evolution of 6xxx series Al alloys as a function of Si:Mg ratio, Cu content, and aging condition. Corrosion, 2017, 73: 1280–1295

    Article  CAS  Google Scholar 

  133. Feng R, Gao M, Lee C, et al. Design of light-weight high-entropy alloys. Entropy, 2016, 18: 333

    Article  Google Scholar 

  134. Yi W, Liu G, Gao J, et al. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques. J Mater Inform, 2021, 1: 11

    Google Scholar 

  135. Jeong IS, Lee JH. Single-phase lightweight high-entropy alloys with enhanced mechanical properties. Mater Des, 2023, 227: 111709

    Article  CAS  Google Scholar 

  136. Saal JE, Kirklin S, Aykol M, et al. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM, 2013, 65: 1501–1509

    Article  CAS  Google Scholar 

  137. Li R, Xie L, Wang WY, et al. High-throughput calculations for high-entropy alloys: A brief review. Front Mater, 2020, 7: 290

    Article  Google Scholar 

  138. Schmid-Fetzer R, Zhang F. The light alloy calphad databases PanAl and PanMg. Calphad, 2018, 61: 246–263

    Article  CAS  Google Scholar 

  139. Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun, 2015, 6: 6529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 05269-15 and CRDPJ 514651-17).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Cui L conceptualized this article, analyzed and validated the data, and wrote the original draft; Zhang Z validated the concept and participated in writing, including reviewing and editing. Chen XG conceptualized and validated this review, and engaged in writing, including reviewing, editing, and supervision.

Corresponding authors

Correspondence to Liying Cui  (崔立莹) or X.-Grant Chen  (陈晓光).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Liying Cui is a PhD candidate at the Department of Applied Science, University of Québec at Chicoutimi. She works in the field of materials science and engineering, and her research interests include high-entropy alloys, alloy development, characterization, and corrosion.

X.-Grant Chen is a professor at the Department of Applied Science, University of Québec at Chicoutimi. He is the Research Chair in Metallurgy of Aluminum Transformation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Zhang, Z. & Chen, XG. Lightweight Al-based entropy alloys: Overview and future trend. Sci. China Mater. 67, 31–46 (2024). https://doi.org/10.1007/s40843-023-2699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2699-2

Keywords

Navigation