Skip to main content
Log in

Unveiling the dual role of silver-associated defects: the manipulators of luminescence and carrier dynamics in eco-friendly AgIn0.5Ga0.5S2

揭示银关联缺陷的双重作用: 环保型AgIn0.5Ga0.5S2 中 发光和载流子动力学的操纵者

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

AgIn0.5Ga0.5S2 has attracted extensive attention in many fields owing to environmental friendliness, low synthetic cost, flexible and adjustable components. Appropriate direct bandgap, no forbidden transition, and high exciton binding energy make it a promising luminescent material. The evolution of the multicomponent system enriches the photoelectric properties and makes its intrinsic defects more complex. Conversely, these defects have an important effect on the photoelectric properties, thus affecting its luminescent performance. However, the microscopic mechanism of point defects corresponding to luminescence observed in experiments is mostly unknown or inferred indirectly for such semiconductors. Here, the mechanism between the microscopic defects and luminescence of AgIn0.5Ga0.5S2 is systematically revealed. Thermodynamic stability shows that AgIn0.5Ga0.5S2 is metastable and has significant competition between the secondary phases. Furthermore, the calculated defect results demonstrate that Ag-associated defects are the behind-the-scenes manipulators. Two shallow-level defects (VAg and Agi) serve as carrier providers, while four deep-level antisite defects (AgIn, AgGa, InAg, and GaAg) act as carrier annihilators. Ultimately, the study of carrier dynamics reveals the adverse effects of four deep-level antisite defects on carriers’ radiative processes. These are intended to provide important guidance for the functional application of AgIn0.5Ga0.5S2 in the field of luminescence.

摘要

AgIn0.5Ga0.5S2 由于环境友好、合成成本低、成分灵活可调等优 点在许多领域受到广泛关注. 适当的直接带隙、无禁戒跃迁和高激子 结合能使其成为一种有前途的发光材料. 多组分体系的演化丰富了光 电特性, 并使其本征缺陷更加复杂. 反过来, 这些缺陷对光电性能有重 要影响, 从而影响其发光性能. 然而, 对于这类半导体, 在实验中观察到 的与发光相对应的点缺陷的微观机制大多是未知的或间接推断的. 本 工作系统地揭示了AgIn0.5Ga0.5S2 的微观缺陷与发光之间的机制. 热力 学稳定性表明AgIn0.5Ga0.5S2 是亚稳态的并且与次生相之间存在显著的 竞争. 此外, 计算的缺陷结果表明, 与银关联的缺陷是幕后操纵者. 两个 浅能级缺陷(VAg 和Agi)充当载流子提供者, 而四个深能级反位缺陷 (AgIn, AgGa, InAg 和GaAg)充当载流子湮灭者. 最后, 载流子动力学的研 究揭示了四种深能级反位缺陷对载流子辐射过程的不利影响. 这些旨 在为AgIn0.5Ga0.5S2 在发光领域的功能应用提供重要指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Zhang T, Wang J, et al. Design of multifunctional quinternary metal-halide perovskite compounds based on cation-anion co-ordering. Chem Mater, 2020, 32: 5949–5957

    Article  CAS  Google Scholar 

  2. Zhao XG, Yang D, Ren JC, et al. Rational design of halide double perovskites for optoelectronic applications. Joule, 2018, 2: 1662–1673

    Article  CAS  Google Scholar 

  3. Walsh A, Chen S, Wei SH, et al. Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater, 2012, 2: 400–409

    Article  CAS  Google Scholar 

  4. Chen S, Gong XG, Walsh A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys Rev B, 2009, 79: 165211

    Article  Google Scholar 

  5. Jain S, Bharti S, Bhullar GK, et al. I–III–VI core/shell QDs: Synthesis, characterizations and applications. J Lumin, 2020, 219: 116912

    Article  CAS  Google Scholar 

  6. Long Z, Zhang W, Tian J, et al. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front, 2021, 8: 880–897

    Article  CAS  Google Scholar 

  7. Wang R, Wu X, Xu K, et al. Highly efficient inverted structural quantum dot solar cells. Adv Mater, 2018, 30: 1704882

    Article  Google Scholar 

  8. Luo S, Ke J, Yuan M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl Catal B-Environ, 2018, 221: 215–222

    Article  CAS  Google Scholar 

  9. Tsolekile N, Parani S, Matoetoe MC, et al. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct Nano-Objects, 2017, 12: 46–56

    Article  CAS  Google Scholar 

  10. Liu G, Zhang S, Xu L, et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display. Prog Quantum Electron, 2022, 86: 100415

    Article  Google Scholar 

  11. Yue L, Li H, Liu Q, et al. Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Microchim Acta, 2019, 186: 315

    Article  Google Scholar 

  12. Chen S, Walsh A, Gong XG, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater, 2013, 25: 1522–1539

    Article  Google Scholar 

  13. Xu Y, Chen T, Wang L, et al. From preparation to lighting and display applications of I–III–VI quantum dots. Prog Chem, 2019, 31: 1238

    CAS  Google Scholar 

  14. Kim JH, Kim BY, Jang EP, et al. A near-ideal color rendering white solid-state lighting device copackaged with two color-separated Cu–X–S (X = Ga, In) quantum dot emitters. J Mater Chem C, 2017, 5: 6755–6761

    Article  CAS  Google Scholar 

  15. Bhattacharyya B, Pandey A. CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: Synthesis, tunability, and photophysics. J Am Chem Soc, 2016, 138: 10207–10213

    Article  CAS  Google Scholar 

  16. Ko M, Yoon HC, Yoo H, et al. Highly efficient green Zn–Ag–In–S/Zn–In–S/ZnS QDs by a strong exothermic reaction for down-converted green and tripackage white LEDs. Adv Funct Mater, 2017, 27: 1602638

    Article  Google Scholar 

  17. Kim JH, Yang H. High-efficiency Cu-In-S quantum-dot-light-emitting device exceeding 7%. Chem Mater, 2016, 28: 6329–6335

    Article  CAS  Google Scholar 

  18. Chen S, Gong X, Walsh A, et al. Recent progress in the theoretical study of Cu2ZnSnS4 and related chalcogenide semiconductors. Physics, 2011, 40: 248–258

    CAS  Google Scholar 

  19. Li R, Li X, Xi L, et al. High-throughput screening for advanced thermoelectric materials: Diamond-like ABX2 compounds. ACS Appl Mater Interfaces, 2019, 11: 24859–24866

    Article  CAS  Google Scholar 

  20. Liu J, Hua E. Electronic structure and absolute band edge position of tetragonal AgInS2 photocatalyst: A hybrid density functional study. Mater Sci Semiconductor Processing, 2015, 40: 446–452

    Article  CAS  Google Scholar 

  21. Jang JS, Borse PH, Lee JS, et al. Indium induced band gap tailoring in AgGa1−xInxS2 chalcopyrite structure for visible light photocatalysis. J Chem Phys, 2008, 128: 154717

    Article  Google Scholar 

  22. Chen O, Zhao J, Chauhan VP, et al. Compact high-quality CdSe–CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater, 2013, 12: 445–451

    Article  CAS  Google Scholar 

  23. Yu P, Shan Y, Cao S, et al. Inorganic solid phosphorus precursor of sodium phosphaethynolate for synthesis of highly luminescent InP-based quantum dots. ACS Energy Lett, 2021, 6: 2697–2703

    Article  CAS  Google Scholar 

  24. Yarema O, Yarema M, Wood V. Tuning the composition of multi-component semiconductor nanocrystals: The case of I–III–VI materials. Chem Mater, 2018, 30: 1446–1461

    Article  CAS  Google Scholar 

  25. Chestnoy N, Harris TD, Hull R, et al. Luminescence and photophysics of cadmium sulfide semiconductor clusters: The nature of the emitting electronic state. J Phys Chem, 1986, 90: 3393–3399

    Article  CAS  Google Scholar 

  26. Mao B, Chuang CH, Wang J, et al. Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: Intrinsic versus surface states. J Phys Chem C, 2011, 115: 8945–8954

    Article  CAS  Google Scholar 

  27. Li L, Pandey A, Werder DJ, et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J Am Chem Soc, 2011, 133: 1176–1179

    Article  CAS  Google Scholar 

  28. Albor-Aguilera ML, Ramírez-Rosales D, González-Trujillo MA. Change from n-type to p-type conductivity on AgInS2 and AgInS2:Sn polycrystalline thin films prepared by spray pyrolysis technique. Thin Solid Films, 2009, 517: 2535–2537

    Article  CAS  Google Scholar 

  29. Hoisang W, Uematsu T, Torimoto T, et al. Luminescent quaternary Ag(InxGa1−x)S2/GaSy core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg Chem, 2021, 60: 13101–13109

    Article  CAS  Google Scholar 

  30. Yoon H, Kim HS, Kim J, et al. Blue graphene quantum dots with high color purity by controlling subdomain formation for light-emitting devices. ACS Appl Nano Mater, 2020, 3: 6469–6477

    Article  CAS  Google Scholar 

  31. Hoisang W, Uematsu T, Torimoto T, et al. Surface ligand chemistry on quaternary Ag(InxGa1−x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv, 2022, 4: 849–857

    Article  CAS  Google Scholar 

  32. Park YJ, Oh JH, Han NS, et al. Photoluminescence of band gap states in AgInS2 nanoparticles. J Phys Chem C, 2014, 118: 25677–25683

    Article  CAS  Google Scholar 

  33. Hamanaka Y, Ozawa K, Kuzuya T. Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J Phys Chem C, 2014, 118: 14562–14568

    Article  CAS  Google Scholar 

  34. Jagadeeswararao M, Swarnkar A, Markad GB, et al. Defect-mediated electron-hole separation in colloidal Ag2S–AgInS2 hetero dimer nanocrystals tailoring luminescence and solar cell properties. J Phys Chem C, 2016, 120: 19461–19469

    Article  CAS  Google Scholar 

  35. Zhou X, Qiao J, Zhao Y, et al. Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization. Sci China Mater, 2022, 65: 1103–1111

    Article  CAS  Google Scholar 

  36. Lin M, Jiang W, Yang C, et al. Oriented assembly of metal-organic frameworks and deficient TiO2 nanowires directed by lattice matching for efficient photoreversible color switching. Sci China Mater, 2022, 65: 992–999

    Article  CAS  Google Scholar 

  37. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  38. Qiao L, Fang WH, Long R, et al. Elimination of charge recombination centers in metal halide perovskites by strain. J Am Chem Soc, 2021, 143: 9982–9990

    Article  CAS  Google Scholar 

  39. Shaukat A, Singh RD. Tetragonal distortion for AIBIIICVI2 chalcopyrite compounds. J Phys Chem Solids, 1978, 39: 1269–1272

    Article  CAS  Google Scholar 

  40. Zhang Y, Yuan X, Sun X, et al. Comparative study of structural and electronic properties of Cu-based multinary semiconductors. Phys Rev B, 2011, 84: 075127

    Article  Google Scholar 

  41. Vidal J, Botti S, Olsson P, et al. Strong interplay between structure and electronic properties in CuIn(S,Se)2: A first-principles study. Phys Rev Lett, 2010, 104: 056401

    Article  Google Scholar 

  42. Müller PC, Ertural C, Hempelmann J, et al. Crystal orbital bond index: Covalent bond orders in solids. J Phys Chem C, 2021, 125: 7959–7970

    Article  Google Scholar 

  43. Nelson R, Ertural C, George J, et al. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem, 2020, 41: 1931–1940

    Article  CAS  Google Scholar 

  44. Meng W, Wang X, Xiao Z, et al. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J Phys Chem Lett, 2017, 8: 2999–3007

    Article  CAS  Google Scholar 

  45. Jong UG, Yu CJ, Ri JS, et al. Influence of halide composition on the structural, electronic, and optical properties of mixed CH3NH3Pb-(I1−xBrx)3 perovskites calculated using the virtual crystal approximation method. Phys Rev B, 2016, 94: 125139

    Article  Google Scholar 

  46. Peter Y, Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties. Berlin: Springer Science and Business Media, 2010

    Google Scholar 

  47. Rogach AL, Kornowski A, Gao M, et al. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B, 1999, 103: 3065–3069

    Article  CAS  Google Scholar 

  48. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696

    Article  CAS  Google Scholar 

  49. Karunagaran N, Ramasamy P. Investigation on synthesis, growth, structure and physical properties of AgGa0.5In0.5S2 single crystals for mid-IR application. J Cryst Growth, 2018, 483: 169–174

    Article  CAS  Google Scholar 

  50. Purohit M, Meena SK, Dashora A, et al. Bandgap engineering of Ag-GaS2 for optoelectronic devices: First-principles computational technique. In: Kalam A, Niazi K, Soni A, et al. (eds). Intelligent Computing Techniques for Smart Energy Systems: Proceedings of ICTSES 2018. Singapore: Springer, 2020

    Google Scholar 

  51. Xu J, Liu JB, Liu BX, et al. Intrinsic defect physics in indium-based lead-free halide double perovskites. J Phys Chem Lett, 2017, 8: 4391–4396

    Article  CAS  Google Scholar 

  52. Wang R, Dou B, Zheng Y, et al. Investigation of Ag(Ga,In)Se2 as thin-film solar cell absorbers: A first-principles study. Sci China-Phys Mech Astron, 2022, 65: 107311

    Article  CAS  Google Scholar 

  53. Cichy B, Olejniczak A, Bezkrovnyi O, et al. Defects mediated charge disturbance in quantum-confined AgxS/AgInS2 random alloys—Toward slowly decaying quantum dot emitters. J Alloys Compd, 2019, 798: 290–299

    Article  CAS  Google Scholar 

  54. Lax M. The franck-condon principle and its application to crystals. J Chem Phys, 1952, 20: 1752–1760

    Article  CAS  Google Scholar 

  55. Zhang HS, Shi L, Yang XB, et al. First-principles calculations of quantum efficiency for point defects in semiconductors: The example of yellow luminance by GaN:CN + ON and GaN:CN. Adv Opt Mater, 2017, 5: 1700404

    Article  Google Scholar 

  56. Dreyer CE, Alkauskas A, Lyons JL, et al. Radiative capture rates at deep defects from electronic structure calculations. Phys Rev B, 2020, 102: 085305

    Article  CAS  Google Scholar 

  57. Uematsu T, Tepakidareekul M, Hirano T, et al. Facile high-yield synthesis of Ag-In-Ga-S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem Mater, 2023, 35: 1094–1106

    Article  CAS  Google Scholar 

  58. Shi R, Fang Q, Vasenko AS, et al. Structural disorder in higher-temperature phases increases charge carrier lifetimes in metal halide perovskites. J Am Chem Soc, 2022, 144: 19137–19149

    Article  CAS  Google Scholar 

  59. Huang K, Rhys A. Theory of light absorption and non-radiative transitions in F-centres. Proc R Soc Lond A, 1950, 204: 406–423

    Article  CAS  Google Scholar 

  60. Wang X, Meng W, Liao W, et al. Atomistic mechanism of broadband emission in metal halide perovskites. J Phys Chem Lett, 2019, 10: 501–506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20180071), the Fundamental Research Funds for the Central Universities (30919011109), Qing Lan Project of Jiangsu Province, and the Six Talent Peaks Project of Jiangsu Province (XCL-035).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zeng H, Zhang S and Liu G conceived the idea and directed the project. Liu G analyzed the data and wrote the manuscript. All authors commented and revised the manuscript.

Corresponding authors

Correspondence to Shengli Zhang  (张胜利) or Haibo Zeng  (曾海波).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Gaoyu Liu is a PhD candidate at Nanjing University of Science and Technology. His current research focuses on defect regulation and carrier dynamics in eco-friendly luminescent semiconductors.

Shengli Zhang received his PhD degree from Beijing University of Chemical Technology in 2013. He then joined the MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology. His research interests are focused on electronic or optoelectronic devices and applications.

Haibo Zeng received his PhD degree from the Institute of Solid State Physics, Chinese Academy of Sciences in 2006. Now he is the leader of MIIT Key Laboratory of Advanced Display Materials and Devices, Institute ofOptoelectronics & Nanomaterials. His current research focuses on QDs (synthesis, optics, photodetectors and LEDs).

Electronic supplementary material

40843_2023_2680_MOESM1_ESM.pdf

Supplementary materials: Unveiling the Dual Role of Silver-Associated Defects: The Manipulators of Luminescence and Carrier Dynamics in Eco-Friendly AgIn0.5Ga0.5S2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Xu, L., Hu, Y. et al. Unveiling the dual role of silver-associated defects: the manipulators of luminescence and carrier dynamics in eco-friendly AgIn0.5Ga0.5S2. Sci. China Mater. 67, 214–222 (2024). https://doi.org/10.1007/s40843-023-2680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2680-x

Keywords

Navigation