Skip to main content
Log in

Investigation of Ag(Ga,In)Se2 as thin-film solar cell absorbers: A first-principles study

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Using first-principles calculations, the structural, electronic, and defect properties of AgInSe2 (AIS), AgGaSe2 (AGS), and their alloys (AIGS) are systematically studied and compared with their Cu counterparts as potential candidates for thin-film solar cell absorbers. The bandgap energies of AIS (1.24 eV) and AGS (1.84 eV) are larger than their Cu counterparts, despite their larger lattice parameters. According to the Shockley-Queisser theory, AIS or AIGS could be more suitable for solar-cell-absorber materials than their Cu counterparts. However, after investigating the band structures and intrinsic defect properties of AIS and AGS, we find that, (i) AIS and AGS have large negative crystal field splitting, thus low density of states near the valence band maximum (VBM); (ii) similar to the Cu counterparts, Ag vacancy (VAg) is the main hole-carrier provider, while InAg (or GaAg) serves as the hole-carrier killer in p-type AIS (or AGS). However, because the positions of the VBM and conduction band minimum of AIS (or AGS) are lower than those of CuInSe2 (CIS) [or CuGaSe2 (CGS)], the compensation of the p-type doping in AIS (or AGS) is more severe. Thus, the p-type doping of AIS (or AIGS) is more difficult than that of CIS (or CIGS), which is consistent with the doping limit rule. To improve the p-type doping of the AIS (or AIGS) as the solar-cell absorber, thus, improve the power conversion efficiency (PCE), the Ag-rich/(In,Ga)-poor/Se-rich growth condition is preferred. Alloy engineering of AIS with AGS can enhance the PCE because it can tune the bandgap energy of the absorber and band alignment at the absorber/buffer interface. More importantly, we suggest that for AIS (or AIGS) solar cell, the traditional buffer material of CdS is not suitable anymore due to the large conduction band offset between AIS and CdS. A new buffer layer material with a lower conduction band edge is necessary for better electron transport in AIS (or AIGS) solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, Prog. Photovolt. 30, 3 (2022).

    Article  Google Scholar 

  2. M. O. Reese, S. Glynn, M. D. Kempe, D. L. McGott, M. S. Dabney, T. M. Barnes, S. Booth, D. Feldman, and N. M. Haegel, Nat. Energy 3, 1002 (2018).

    Article  ADS  Google Scholar 

  3. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019).

    Article  Google Scholar 

  4. S. H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998).

    Article  ADS  Google Scholar 

  5. J. Gong, Y. Kong, J. Li, K. Wang, X. Wang, Z. Zhang, Z. Ding, and X. Xiao, Nano Energy 62, 205 (2019).

    Article  ADS  Google Scholar 

  6. R. Wang, M. Lan, Y. Zheng, J. Yang, B. Li, and S. H. Wei, ACS Appl. Mater. Interfaces 13, 15237 (2021).

    Article  Google Scholar 

  7. G. M. Wilson, M. Al-Jassim, W. K. Metzger, S. W. Glunz, P. Verlinden, G. Xiong, L. M. Mansfield, B. J. Stanbery, K. Zhu, Y. Yan, J. J. Berry, A. J. Ptak, F. Dimroth, B. M. Kayes, A. C. Tamboli, R. Peibst, K. Catchpole, M. O. Reese, C. S. Klinga, P. Denholm, M. Morjaria, M. G. Deceglie, J. M. Freeman, M. A. Mikofski, D. C. Jordan, G. TamizhMani, and D. B. Sulas-Kern, J. Phys. D-Appl. Phys. 53, 493001 (2020).

    Article  Google Scholar 

  8. M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, Prog. Photovolt-Res. Appl. 20, 843 (2012).

    Article  Google Scholar 

  9. Y. Hirai, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys. 53, 012301 (2014).

    Article  ADS  Google Scholar 

  10. B. Huang, S. Chen, H. X. Deng, L. W. Wang, M. A. Contreras, R. Noufi, and S. H. Wei, IEEE J. Photovolt. 4, 477 (2014).

    Article  Google Scholar 

  11. S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Adv. Mater. 25, 1522 (2013).

    Article  Google Scholar 

  12. S. H. Wei, and A. Zunger, J. Appl. Phys. 78, 3846 (1995).

    Article  ADS  Google Scholar 

  13. N. Kim, P. P. Martin, A. A. Rockett, and E. Ertekin, Phys. Rev. B 93, 165202 (2016), arXiv: 1509.02306.

    Article  ADS  Google Scholar 

  14. X. F. Zhang, J. Liu, and G. F. Liu, AIP Adv. 6, 065222 (2016).

    Article  ADS  Google Scholar 

  15. T. Umehara, F. A. B. M. Zulkifly, K. Nakada, and A. Yamada, Jpn. J. Appl. Phys. 56, 08MC09 (2017).

    Article  Google Scholar 

  16. T. Umehara, K. Nakada, and A. Yamada, Jpn. J. Appl. Phys. 56, 012302 (2017).

    Article  ADS  Google Scholar 

  17. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  18. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  19. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  20. H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004).

    Book  Google Scholar 

  22. S. Shirakata, N. Happo, and S. Hosokawa, Phys. Status Solidi A 216, 1800971 (2019).

    Article  ADS  Google Scholar 

  23. P. Benoit, P. Charpin, R. Lesueur, and C. Djega-Mariadassou, Jpn. J. Appl. Phys. 19, 85 (1980).

    Article  Google Scholar 

  24. J. L. Shay, and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon Press, Oxford, 1974).

    Google Scholar 

  25. S. Sharma, A. S. Verma, and V. K. Jindal, Phys. B-Condens. Matter 438, 97 (2014).

    Article  ADS  Google Scholar 

  26. J. A. van Vechten, and J. C. Phillips, Phys. Rev. B 2, 2160 (1970).

    Article  ADS  Google Scholar 

  27. S. H. Wei, and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  ADS  Google Scholar 

  28. S. B. Zhang, S. H. Wei, and A. Zunger, J. Appl. Phys. 83, 3192 (1998).

    Article  ADS  Google Scholar 

  29. S. H. Wei, S. B. Zhang, and A. Zunger, J. Appl. Phys. 87, 1304 (2000).

    Article  ADS  Google Scholar 

  30. W. Wang, D. Zhang, R. Liu, D. T. Gangadharan, F. Tan, and M. I. Saidaminov, J. Semicond. 43, 051202 (2022).

    Article  ADS  Google Scholar 

  31. S. H. Wei, Comput. Mater. Sci. 30, 337 (2004).

    Article  Google Scholar 

  32. S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).

    Article  ADS  Google Scholar 

  33. J. Ma, and S. H. Wei, Phys. Rev. B 87, 241201 (2013).

    Article  ADS  Google Scholar 

  34. J. Yang, and S. H. Wei, Chin. Phys. B 28, 086106 (2019).

    Article  ADS  Google Scholar 

  35. I. Ho, and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).

    Article  ADS  Google Scholar 

  36. S. H. Wei, and A. Zunger, Appl. Phys. Lett. 56, 662 (1990).

    Article  ADS  Google Scholar 

  37. W. Shockley, and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Huai Wei.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11991060, 12088101, and U1930402). National Supercomputer Center in Tianjin is acknowledged for computational support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Dou, B., Zheng, Y. et al. Investigation of Ag(Ga,In)Se2 as thin-film solar cell absorbers: A first-principles study. Sci. China Phys. Mech. Astron. 65, 107311 (2022). https://doi.org/10.1007/s11433-022-1935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1935-3

Navigation