Skip to main content
Log in

Efficient NAD+ regeneration facilitated by synergistically intensified charge generation and transfer in fullerene/porphyrin assemblies

富勒烯/卟啉组装体内协同增强的电荷生成与转移实现NAD+高效再生

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Enzymatic catalysis exhibits the merits of high catalytic rates and specificity, whereas a major obstacle that hampers commercialization is the need for expensive nicotinamide adenine dinucleotide (NAD+) cofactor; thus the regeneration of NAD+ is necessary. Here, we report a fullerene-based photocatalyst (C60-ZnTPP) capable of regenerating NAD+ through oxidation of NADH by photogenerated holes, accompanied by simultaneous hydrogen formation. Zinc meso-tetraphenylporphine (ZnTPP) and C60 are combined as a donor–acceptor (D–A) structure with a robust internal electric field (IEF, 5.67 times greater than that of ZnTPP), ensuring ultrafast (∼1 ps) and long-lived charge separation (>3 ns) and transfer, which is conducive to improving the performance of photocatalytic regeneration of NAD+. NADH is used as the sole hole sacrificial agent in the system, achieving up to 98.6% NAD+ regeneration within 5 h under visible light (≥420 nm) illumination. Equivalent oxidation of ethanol is catalyzed by alcohol dehydrogenase, a key enzyme in human alcohol metabolism, to verify the enzymatic activity of photocatalyzed NAD+. This work provides an extended choice of materials available for photocatalytic NAD+ regeneration, offering valuable insights into optimizing efficient cofactor regeneration pathways.

摘要

昂贵的辅因子烟酰胺腺嘌呤二核苷酸(NAD+)是限制酶催化商业化应用的主要障碍, 因此高效再生NAD+具有重要意义. 本文利用液液界面沉积法制备了一种富勒烯-锌卟啉光催化剂(C60-ZnTPP), 通过光生空穴氧化NADH再生NAD+. C60-ZnTPP给受体结构具有强大的内建电场(是ZnTPP的5.67倍), 最大限度地减少了电荷复合, 保证了超快(~1 ps)电荷分离与长寿命的电荷传输(>3 ns), 有利于提高光催化NAD+再生性能. 本体系以NADH作为唯一的空穴牺牲剂, 在可见光照射5小时内达到98.6%的转化率, 随后利用在人体解酒中起重要作用的乙醇脱氢酶催化乙醇氧化验证NAD+的酶活性, 获得了化学当量的醛.本工作扩展了光催化再生NAD+材料的选择, 为完善辅因子的高效再生途径提供了重要指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H, Dong F, Minteer SD. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat Catal, 2020, 3: 225–244

    Article  Google Scholar 

  2. Osman AI, Elgarahy AM, Eltaweil AS, et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ Chem Lett, 2023, 21: 1315–1379

    Article  CAS  Google Scholar 

  3. Mordhorst S, Andexer JN. Round, round we go—Strategies for enzymatic cofactor regeneration. Nat Prod Rep, 2020, 37: 1316–1333

    Article  CAS  Google Scholar 

  4. Vázquez-González M, Wang C, Willner I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat Catal, 2020, 3: 256–273

    Article  Google Scholar 

  5. Wu H, Tian C, Song X, et al. Methods for the regeneration of nicotinamide coenzymes. Green Chem, 2013, 15: 1773

    Article  CAS  Google Scholar 

  6. Edegger K, Gruber CC, Poessl TM, et al. Biocatalytic deuterium- and hydrogen-transfer using over-expressed ADH-‘A’: Enhanced stereoselectivity and 2H-labeled chiral alcohols. Chem Commun, 2006, 2402–2404

  7. Kochius S, Magnusson AO, Hollmann F, et al. Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol, 2012, 93: 2251–2264

    Article  CAS  Google Scholar 

  8. Maenaka Y, Suenobu T, Fukuzumi S. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature. J Am Chem Soc, 2012, 134: 367–374

    Article  CAS  Google Scholar 

  9. Wang L, Qi Y, Li H, et al. Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Sci China Mater, 2022, 65: 974–984

    Article  CAS  Google Scholar 

  10. Jiang L, Li Y, Wu X, et al. Rich oxygen vacancies mediated bismuth oxysulfide crystals towards photocatalytic CO2-to-CH4 conversion. Sci China Mater, 2021, 64: 2230–2241

    Article  CAS  Google Scholar 

  11. Yang N, Tian Y, Zhang M, et al. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv, 2022, 54: 107808

    Article  CAS  Google Scholar 

  12. Chen XK, Coropceanu V, Bredas JL. Assessing the nature of the chargetransfer electronic states in organic solar cells. Nat Commun, 2018, 9: 5295

    Article  CAS  Google Scholar 

  13. Coropceanu V, Chen XK, Wang T, et al. Charge-transfer electronic states in organic solar cells. Nat Rev Mater, 2019, 4: 689–707

    Article  Google Scholar 

  14. Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angew Chem Int Ed, 2014, 53: 2038–2054

    Article  CAS  Google Scholar 

  15. Xiang S, Han C, Shu C, et al. Structure evolution of thiophene-containing conjugated polymer photocatalysts for high-efficiency photocatalytic hydrogen production. Sci China Mater, 2022, 65: 422–430

    Article  CAS  Google Scholar 

  16. Li J, Yu Y, Zhang L. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale, 2014, 6: 8473–8488

    Article  CAS  Google Scholar 

  17. Ouyang W, Teng F, Fang X. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: The influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater, 2018, 28: 1707178

    Article  Google Scholar 

  18. Yao S, Yuan X, Jiang L, et al. Recent progress on fullerene-based materials: Synthesis, properties, modifications, and photocatalytic applications. Materials, 2020, 13: 2924

    Article  CAS  Google Scholar 

  19. Nardes AM, Ferguson AJ, Whitaker JB, et al. Beyond PCBM: Understanding the photovoltaic performance of blends of indene-C60 multiadducts with poly(3-hexylthiophene). Adv Funct Mater, 2012, 22: 4115–4127

    Article  CAS  Google Scholar 

  20. Park B, Cho SE, Kim Y, et al. Simultaneous study of exciton diffusion/dissociation and charge transport in a donor-acceptor bilayer: Pentacene on a C60-terminated self-assembled monolayer. Adv Mater, 2013, 25: 6453–6458

    Article  CAS  Google Scholar 

  21. El-Khouly ME, Ito O, Smith PM, et al. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. J Photochem Photobiol C Photochem Rev, 2004, 5: 79–104

    Article  CAS  Google Scholar 

  22. Wakahara T, D’Angelo P, Miyazawa K’, et al. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. J Am Chem Soc, 2012, 134: 7204–7206

    Article  CAS  Google Scholar 

  23. Gilissen PJ, White PB, Berrocal JA, et al. Molecular motor-functionalized porphyrin macrocycles. Nat Commun, 2020, 11: 5291

    Article  CAS  Google Scholar 

  24. Liu L, Chen X, Chai Y, et al. Highly efficient photocatalytic hydrogen production via porphyrin-fullerene supramolecular photocatalyst with donor-acceptor structure. Chem Eng J, 2022, 444: 136621

    Article  CAS  Google Scholar 

  25. Saba T, Burnett JWH, Li J, et al. A facile analytical method for reliable selectivity examination in cofactor NADH regeneration. Chem Commun, 2020, 56: 1231–1234

    Article  CAS  Google Scholar 

  26. Dong J, Wang M, Zhang P, et al. Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. J Phys Chem C, 2011, 115: 15089–15096

    Article  CAS  Google Scholar 

  27. Simon T, Bouchonville N, Berr MJ, et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater, 2014, 13: 1013–1018

    Article  CAS  Google Scholar 

  28. Wang C, Wu B, Li Y, et al. Regioisomeric benzidine-fullerenes: Tuning of the diverse hole-distribution to influence charge separation patterns. Angew Chem Int Ed, 2023, 62: e202300377

    Article  CAS  Google Scholar 

  29. Chen Z, Wang J, Zhang S, et al. Porphyrin-based conjugated polymers as intrinsic semiconducting photocatalysts for robust H2 generation under visible light. ACS Appl Energy Mater, 2019, 2: 5665–5676

    Article  CAS  Google Scholar 

  30. An P, Kang L, Tang Z, et al. Spectroscopic identification towards tunable mesoscale aggregates of zinc tetraphenylporphyrin for materials. Chin Chem Lett, 2018, 29: 361–365

    Article  CAS  Google Scholar 

  31. Zhu W, Miser DE, Geoffrey Chan W, et al. Characterization of combustion fullerene soot, C60, and mixed fullerene. Carbon, 2004, 42: 1463–1471

    Article  CAS  Google Scholar 

  32. Zhao H, Luo D, Xu H, et al. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J Mater Sci, 2022, 57: 9980–9991

    Article  CAS  Google Scholar 

  33. Liu T, Ding E, Xue F. Polyacrylamide and poly(N,N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Int J Biol Macromol, 2017, 103: 1107–1112

    Article  CAS  Google Scholar 

  34. Chen Y, Mo Z, Zhu X, et al. Facilitated interfacial charge separation using triphenylamine-zinc porphyrin dyad-sensitized TiO2 nanoparticles for photocatalysis. J Alloys Compd, 2021, 889: 161795

    Article  Google Scholar 

  35. Wang W, Zhang H, Zhang S, et al. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew Chem Int Ed, 2019, 58: 16644–16650

    Article  CAS  Google Scholar 

  36. Pramanik A, Biswas S, Tiwary CS, et al. Colloidal N-doped graphene quantum dots with tailored luminescent downshifting and detection of UVA radiation with enhanced responsivity. ACS Omega, 2018, 3: 16260–16270

    Article  CAS  Google Scholar 

  37. Kaushik S, Naik TR, Alka A, et al. Surface modification of AlN using organic molecular layer for improved deep UV photodetector performance. ACS Appl Electron Mater, 2020, 2: 739–746

    Article  CAS  Google Scholar 

  38. Lu X, Sun J, Zhang S, et al. Donor-acceptor type co-crystals of arylthiosubstituted tetrathiafulvalenes and fullerenes. Beilstein J Org Chem, 2015, 11: 1043–1051

    Article  CAS  Google Scholar 

  39. Wakahara T, Sathish M, Miyazawa K’, et al. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. J Am Chem Soc, 2009, 131: 9940–9944

    Article  CAS  Google Scholar 

  40. Usai S, Obregón S, Becerro AI, et al. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J Phys Chem C, 2013, 117: 24479–24484

    Article  CAS  Google Scholar 

  41. Wang X, Maeda K, Chen X, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc, 2009, 131: 1680–1681

    Article  CAS  Google Scholar 

  42. Wei W, Mazzotta F, Lieberwirth I, et al. Aerobic photobiocatalysis enabled by combining core–shell nanophotoreactors and native enzymes. J Am Chem Soc, 2022, 144: 7320–7326

    Article  CAS  Google Scholar 

  43. Xu HQ, Hu J, Wang D, et al. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states. J Am Chem Soc, 2015, 137: 13440–13443

    Article  CAS  Google Scholar 

  44. Li R, Ma BC, Huang W, et al. Photocatalytic regioselective and stereoselective [2 + 2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst. ACS Catal, 2017, 7: 3097–3101

    Article  CAS  Google Scholar 

  45. Zhang S, Shi J, Chen Y, et al. Unraveling and manipulating of NADH oxidation by photogenerated holes. ACS Catal, 2020, 10: 4967–4972

    Article  CAS  Google Scholar 

  46. Zhang L, He X, Xu X, et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl Catal B-Environ, 2017, 203: 1–8

    Article  CAS  Google Scholar 

  47. Zhao H, Dong Y, Sun P, et al. Effect of D/A ratio on photocatalytic hydrogen evolution performance of conjugated polymer photocatalysts. ACS Appl Energy Mater, 2022, 5: 4631–4640

    Article  CAS  Google Scholar 

  48. Yang J, Jing J, Zhu Y. A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv Mater, 2021, 33: 2101026

    Article  CAS  Google Scholar 

  49. Zhang LW, Wang YJ, Cheng HY, et al. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv Mater, 2009, 21: 1286–1290

    Article  CAS  Google Scholar 

  50. Yu Q, Chen J, Li Y, et al. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chin J Catal, 2020, 41: 1603–1612

    Article  CAS  Google Scholar 

  51. Li J, Cai L, Shang J, et al. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv Mater, 2016, 28: 4059–4064

    Article  CAS  Google Scholar 

  52. Sukegawa J, Schubert C, Zhu X, et al. Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nat Chem, 2014, 6: 899–905

    Article  CAS  Google Scholar 

  53. Moore GJ, Causa’ M, Martinez Hardigree JF, et al. Ultrafast charge dynamics in dilute-donor versus highly intermixed TAPC:C60 organic solar cell blends. J Phys Chem Lett, 2020, 11: 5610–5617

    Article  CAS  Google Scholar 

  54. Hou Y, Zhang X, Chen K, et al. Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. J Mater Chem C, 2019, 7: 12048–12074

    Article  CAS  Google Scholar 

  55. Liu Y, Wang L, Feng H, et al. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett, 2019, 19: 2614–2619

    Article  CAS  Google Scholar 

  56. Gargiulo S, Arends IWCE, Hollmann F. A photoenzymatic system for alcohol oxidation. ChemCatChem, 2011, 3: 338–342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Prof. Chunli Bai on the occasion of his 70th birthday. This work was supported by the National Natural Science Foundation of China (52072374, 52322204 and 51832008), the Ministry of Science and Technology of China (2022YFA1205900). Wu B thanks the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS, Y2022015). We thank Dr. Jing Li, Dr. Heng Lu, Dr. Qian Wan and Dr. Meng Di Liu at the Technical Institute of Physics and Chemistry, CAS for the help of transient absorption measurements.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jiang Y, Wu B and Wang C designed and engineered the experiments; Wu B and Wang C supervised the research; Jiang Y synthesized and characterized the samples; Jiang Y, Wang C, Hua Z, Song Y and Wulan Q participated in the data analysis; Jiang Y wrote the paper with support from Wu B and Wang C. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bo Wu  (吴波) or Chunru Wang  (王春儒).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Ying Jiang is currently a PhD candidate at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). She received her Bachelor’s degree from Xiangtan University in 2017. Her PhD research focuses on the synthesis and design of fullerene-relevant nanomaterials and their applications in photocatalysis.

Bo Wu received her PhD degree from ICCAS in 2016. She is now an associate professor at ICCAS. Her research focuses on the photoelectric properties of fullerene-based nanocomposites.

Chunru Wang received his PhD degree in physical chemistry in 1992 from CAS. Currently, he is a professor at ICCAS. His research interests include the synthesis, isolation, and characterization of endohedral fullerenes and the industrial applications of fullerenes and metallofullerenes.

Electronic supplementary material

40843_2023_2671_MOESM1_ESM.pdf

Supporting Information: Efficient NAD+ regeneration facilitated by synergistically intensified charge generation and transfer in fullerene/porphyrin assemblies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, C., Hua, Z. et al. Efficient NAD+ regeneration facilitated by synergistically intensified charge generation and transfer in fullerene/porphyrin assemblies. Sci. China Mater. 67, 188–196 (2024). https://doi.org/10.1007/s40843-023-2671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2671-5

Keywords

Navigation