Skip to main content
Log in

A novel shear-stiffening supramolecular material derived from diboron structure

基于联硼结构的新型剪切增稠超分子材料

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Shear-stiffening polyborosiloxane (PBS), well-known as “silly putty”, “bouncing putty” or “solid-liquid”, has been widely used in protective armors, sport equipment, toys and so on, due to its fascinating anti-impact property. Since it was created during World War II, there has been rare upgrade of the material. Herein, we synthesize a novel shear-stiffening material, polydiborosiloxane (PDBS), through the design of diboron/oxygen coordination bond. It is revealed that the diboron/oxygen coordination bond possesses more coordination states and higher bond energy than the coordination bond between monoboron and oxygen atoms, leading to a shear-stiffening behavior with more solid-like property. Therefore, PDBS exhibits superior anti-impact property and safeguarding performance to PBS. This shear-stiffening material will open up a new horizon for next-generation intelligent armors, dampers and sensors.

摘要

剪切增稠型聚硼硅氧烷(PBS)通常以“silly putty”, “bouncing putty”或“solid-liquid”被熟知. 因其独特的抗冲击性能, PBS广泛应用于防护装甲、 运动器材、 玩具等领域. 然而, 自第二次世界大战PBS被发明后, PBS材料的更新升级较少. 本论文中, 我们通过设计联硼/氧配位键制备了一类新型剪切增稠材料——聚联硼硅氧烷(PDBS). 结果表明, 与单硼/氧配位键相比, 联硼/氧配位键具有更多的配位结构和更高的键能, 导致PDBS具有更类固体性的剪切增稠行为. 因此, PDBS具有比PBS更优异的抗冲击性能与防护功能, 为新一代智能装备、 阻尼器和传感器的开发提供了一类高性能防护材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li T, Wei H, Zhang Y, et al. Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydrate Polyms, 2023, 309: 120678

    Article  CAS  Google Scholar 

  2. Meng X, Li Y, AlMasoud N, et al. Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer, 2023, 272: 125856

    Article  CAS  Google Scholar 

  3. Shahabaz SM, Sharma S, Shetty N, et al. Influence of temperature on mechanical properties and machining of fibre reinforced polymer composites: A review. Eng Sci, 2021, 16: 26

    CAS  Google Scholar 

  4. Kuang T, Ju J, Liu T, et al. A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv Compos Hybrid Mater, 2022, 5: 948–959

    Article  CAS  Google Scholar 

  5. Gao F, Liu Y, Jiao C, et al. Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci, 2023, pol.20230108

  6. Yang S, Shi C, Qu K, et al. Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett, 2023, doi: https://doi.org/10.1007/s42823-023-00540-0

  7. Wang P, Song T, Abo-Dief HM, et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylenevinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater, 2022, 5: 1100–1110

    Article  CAS  Google Scholar 

  8. Neto JCM, Nascimento NR, Bello RH, et al. Kaolinite review: Intercalation and production of polymer nanocomposites. Eng Sci, 2021, 17: 28

    Google Scholar 

  9. Abtew MA, Boussu F, Bruniaux P, et al. Ballistic impact mechanisms—A review on textiles and fibre-reinforced composites impact responses. Composite Struct, 2019, 223: 110966

    Article  Google Scholar 

  10. Waitukaitis SR, Jaeger HM. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature, 2012, 487: 205–209

    Article  CAS  Google Scholar 

  11. Peters IR, Majumdar S, Jaeger HM. Direct observation of dynamic shear jamming in dense suspensions. Nature, 2016, 532: 214–217

    Article  CAS  Google Scholar 

  12. Li T, Zhang J, Schneiderman DK, et al. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett, 2016, 5: 359–364

    Article  CAS  Google Scholar 

  13. Liu K, Cheng L, Zhang N, et al. Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-bonding. J Am Chem Soc, 2021, 143: 1162–1170

    Article  CAS  Google Scholar 

  14. Wang C, Gao H, Liang D, et al. Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv Compos Hybrid Mater, 2022, 5: 2906–2920

    Article  CAS  Google Scholar 

  15. Liu R, Kim JG, Dhakal P, et al. Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites. Adv Compos Hybrid Mater, 2022, 6: 14

    Article  Google Scholar 

  16. Liu J, Liu K, Pan X, et al. A flexible semidry electrode for long-term, high-quality electrocardiogram monitoring. Adv Compos Hybrid Mater, 2022, 6: 13

    Article  CAS  Google Scholar 

  17. Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354: 1257–1260

    Article  CAS  Google Scholar 

  18. Wang S, Gong L, Shang Z, et al. Novel safeguarding tactile e-skins for monitoring human motion based on SST/PDMS-AgNW-PET hybrid structures. Adv Funct Mater, 2018, 28: 1707538

    Article  Google Scholar 

  19. Cross R. Elastic and viscous properties of silly putty. Am J Phys, 2012, 80 870–875

    Article  CAS  Google Scholar 

  20. Zhao C, Gong X, Wang S, et al. Shear stiffening gels for intelligent antiimpact applications. Cell Rep Phys Sci, 2020, 1: 100266

    Article  CAS  Google Scholar 

  21. Yuan F, Wang S, Zhang S, et al. A flexible viscoelastic coupling cable with self-adapted electrical properties and anti-impact performance toward shapeable electronic devices. J Mater Chem C, 2019, 7: 8412–8422

    Article  CAS  Google Scholar 

  22. Sang M, Zhang J, Liu S, et al. Advanced MXene/shear stiffening composite-based sensor with high-performance electromagnetic interference shielding and anti-impacting Bi-protection properties for smart wearable device. Chem Eng J, 2022, 440: 135869

    Article  CAS  Google Scholar 

  23. Zhao C, Wang Y, Gao L, et al. High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications. ACS Appl Mater Interfaces, 2022, 14: 21564–21576

    Article  CAS  Google Scholar 

  24. Wu J, Wang Y, Zhang J, et al. A lightweight aramid-based structural composite with ultralow thermal conductivity and high-impact force dissipation. Matter, 2022, 5: 2265–2284

    Article  CAS  Google Scholar 

  25. Wang S, Xuan S, Wang Y, et al. Stretchable polyurethane sponge scaffold strengthened shear stiffening polymer and its enhanced safeguarding performance. ACS Appl Mater Interfaces, 2016, 8: 4946–4954

    Article  CAS  Google Scholar 

  26. Fan T, Xue SS, Zhu WB, et al. Multifunctional polyurethane composite foam with outstanding anti-impact capacity for soft body armors. ACS Appl Mater Interfaces, 2022, 14: 13778–13789

    Article  CAS  Google Scholar 

  27. Sang M, Wu Y, Liu S, et al. Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safeguarding. Compos Part B-Eng, 2021, 211: 108669

    Article  CAS  Google Scholar 

  28. Wang S, Xuan S, Liu M, et al. Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance. Soft Matter, 2017, 13: 2483–2491

    Article  CAS  Google Scholar 

  29. Wang W, Zhou J, Wang S, et al. Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy, 2022, 91: 106657

    Article  CAS  Google Scholar 

  30. Zhang S, Lu L, Wang S, et al. Coaxial direct ink writing of shear stiffening gel/ecoflex composite for customized insoles. Compos Part B-Eng, 2021, 225: 109268

    Article  CAS  Google Scholar 

  31. Cheng J, Zhang Z, Liu K, et al. Cartilage-inspired smart anti-impact gel with highly stable and tailored properties. Cell Rep Phys Sci, 2023, 4: 101289

    Article  CAS  Google Scholar 

  32. D’Elia E, Barg S, Ni N, et al. Self-healing graphene-based composites with sensing capabilities. Adv Mater, 2015, 27: 4788–4794

    Article  Google Scholar 

  33. Wu Q, Xiong H, Peng Y, et al. Highly stretchable and self-healing “solid-liquid” elastomer with strain-rate sensing capability. ACS Appl Mater Interfaces, 2019, 11: 19534–19540

    Article  CAS  Google Scholar 

  34. Juhász A, Tasnádi P, Fábry L. Impact studies on the mechanical properties of polyborosiloxane. Phys Educ, 1984, 19: 302–304

    Article  Google Scholar 

  35. Astin C, Talbot D, Goodhew P. Weird materials. Phys Educ, 2002, 37: 516–520

    Article  Google Scholar 

  36. Yajima S, Hayashi J, Okamura K. Pyrolysis of a polyborodiphenylsiloxane. Nature, 1977, 266: 521–522

    Article  CAS  Google Scholar 

  37. Wu T, Chen B. Synthesis of multiwalled carbon nanotube-reinforced polyborosiloxane nanocomposites with mechanically adaptive and self-healing capabilities for flexible conductors. ACS Appl Mater Interfaces, 2016, 8: 24071–24078

    Article  CAS  Google Scholar 

  38. Liu Z, Picken SJ, Besseling NAM. Polyborosiloxanes (PBSs), synthetic kinetics, and characterization. Macromolecules, 2014, 47: 4531–4537

    Article  CAS  Google Scholar 

  39. Li X, Zhang D, Xiang K, et al. Synthesis of polyborosiloxane and its reversible physical crosslinks. RSC Adv, 2014, 4: 32894–32901

    Article  CAS  Google Scholar 

  40. Tang M, Wang W, Xu D, et al. Synthesis of structure-controlled polyborosiloxanes and investigation on their viscoelastic response to molecular mass of polydimethylsiloxane triggered by both chemical and physical interactions. Ind Eng Chem Res, 2016, 55: 12582–12589

    Article  CAS  Google Scholar 

  41. Mashchenko VI, Sitnikov NN, Khabibullina IA, et al. Effect of boric acid on the structure and properties of borosiloxanes. Polym Sci Ser A, 2021, 63: 91–99

    Article  CAS  Google Scholar 

  42. Neeve EC, Geier SJ, Mkhalid IAI, et al. Diboron(4) compounds: From structural curiosity to synthetic workhorse. Chem Rev, 2016, 116: 9091–9161

    Article  CAS  Google Scholar 

  43. Hedberg K. On the bonding in electron deficient compounds of boron1,2. J Am Chem Soc, 1952, 74: 3486–3489

    Article  CAS  Google Scholar 

  44. Dembitsky VM, Abu Ali H, Srebnik M. Recent chemistry of the diboron compounds. Adv Organomet Chem, 2004, 51: 193–250

    Article  CAS  Google Scholar 

  45. Zhang Z, Liu M, Ibrahim MM, et al. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater, 2022, 5: 1054–1066

    Article  CAS  Google Scholar 

  46. Fan G, Wang Z, Sun K, et al. Doped ceramics of indium oxides for negative permittivity materials in MHz−kHz frequency regions. J Mater Sci Tech, 2021, 61: 125–131

    Article  CAS  Google Scholar 

  47. Xie P, Shi Z, Feng M, et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater, 2022, 5: 679–695

    Article  Google Scholar 

  48. Liu M, Wu H, Wu Y, et al. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater, 2022, 5: 2021–2030

    Article  CAS  Google Scholar 

  49. Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc, 2012, 134: 18758–18771

    Article  CAS  Google Scholar 

  50. Foran GY, Harris KJ, Brook MA, et al. Solid state NMR study of boron coordination environments in silicone boronate (SiBA) polymers. Macromolecules, 2019, 52: 1055–1064

    Article  CAS  Google Scholar 

  51. Shabbir SH, Joyce LA, da Cruz GM, et al. Pattern-based recognition for the rapid determination of identity, concentration, and enantiomeric excess of subtly different threo diols. J Am Chem Soc, 2009, 131: 13125–13131

    Article  CAS  Google Scholar 

  52. Van Duin M, Peters JA, Kieboom APG, et al. Studies on borate esters I. Tetrahedron, 1984, 40: 2901–2911

    Article  CAS  Google Scholar 

  53. Van Duin M, Peters JA, Kieboom APG, et al. Studies on borate esters II. Tetrahedron, 1985, 41: 3411–3421

    Article  CAS  Google Scholar 

  54. Zepeda-Velazquez L, Macphail B, Brook MA. Spread and set silicone-boronic acid elastomers. Polym Chem, 2016, 7: 4458–4466

    Article  CAS  Google Scholar 

  55. Dawber JG, Green SIE. An 11B nuclear magnetic resonance study of the reaction of the tetrahydroxyborate ion with polyhydroxy compounds. J Chem Soc Faraday Trans 1, 1986, 82: 3407–3413

    Article  CAS  Google Scholar 

  56. Tanaka J, Nagashima Y, Araujo Dias AJ, et al. Photo-induced ortho-C−H borylation of arenes through in situ generation of rhodium(II) ate complexes. J Am Chem Soc, 2021, 143: 11325–11331

    Article  CAS  Google Scholar 

  57. Cao Y, Zhou P, Tu Y, et al. Modification of TiO2 nanoparticles with organodiboron molecules inducing stable surface Ti3+ complex. iScience, 2019, 20: 195–204

    Article  CAS  Google Scholar 

  58. Barriet D, Yam CM, Shmakova OE, et al. 4-Mercaptophenylboronic acid SAMs on gold: Comparison with SAMs derived from thiophenol, 4-mercaptophenol, and 4-mercaptobenzoic acid. Langmuir, 2007, 23: 8866–8875

    Article  CAS  Google Scholar 

  59. Yan T, Schröter K, Herbst F, et al. What controls the structure and the linear and nonlinear rheological properties of dense, dynamic supramolecular polymer networks? Macromolecules, 2017, 50: 2973–2985

    Article  CAS  Google Scholar 

  60. Song G, Zhao Z, Peng X, et al. Rheological behavior of tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules, 2016, 49: 8265–8273

    Article  CAS  Google Scholar 

  61. Wu J, Gao L, Guo Z, et al. Natural glycyrrhizic acid: Improving stress relaxation rate and glass transition temperature simultaneously in epoxy vitrimers. Green Chem, 2021, 23: 5647–5655

    Article  CAS  Google Scholar 

  62. Hasegawa H, Horikawa Y, Shikata T. Cellulose nanocrystals as a model substance for rigid rod particle suspension rheology. Macromolecules, 2020, 53: 2677–2685

    Article  CAS  Google Scholar 

  63. Zou X, Kui X, Zhang R, et al. Viscoelasticity and structures in chemically and physically dual-cross-linked hydrogels: Insights from rheology and proton multiple-quantum NMR spectroscopy. Macromolecules, 2017, 50: 9340–9352

    Article  CAS  Google Scholar 

  64. Wang H, Peng WS, Wu Q, et al. Interplay of crosslinking structures and segmental dynamics in solid-liquid elastomers. Chin J Polym Sci, 2022, 40: 1297–1306

    Article  CAS  Google Scholar 

  65. Liu S, Wang S, Sang M, et al. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding. ACS Nano, 2022, 16: 19067–19086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52203064 and 51873110), Sichuan Science and Technology Program (2022YFG0115 and 2021JDJQ0018), Sichuan Science and Technology Program-Natural Science Foundation of Sichuan Province (2022NSFSC1982), the Fundamental Research Funds for the Central Universities (2022SCU12011), and the State Key Laboratory of Polymer Materials Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wu J and Wu Q conceived and supervised the project. Wu Q designed the experiments, carried out the experiments and wrote the paper. Peng Y, Xiong H, Hou Y, and Cai M assisted in the characterization. Wu J, Wang Y, and Zhao L discussed and revised the paper.

Corresponding author

Correspondence to Jinrong Wu  (吴锦荣).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Qi Wu is an assistant research fellow at the College of Polymer Science and Engineering, Sichuan University. He received a Bachelor’s degree from Zhejiang University in 2014, a Master’s degree from the University of Chinese Academy of Sciences in 2017, and a doctoral degree from Sichuan University in 2021. His research interests focus on the design and study of intelligent responsive polymers enabled by boron dynamic chemistry.

Jinrong Wu is a professor at the College of Polymer Science and Engineering, Sichuan University. He received a Bachelor’s degree and a Doctoral degree in 2003 and 2008, respectively, from the College of Polymer Science and Engineering, Sichuan University. He studied at Texas Tech University as a visiting student from 2007 to 2008 and at Harvard University as a visiting scholar from 2014 to 2016. His current research involves high-performance, functional, and self-healing elastomers and related theoretical problems of elastomer materials

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Peng, Y., Xiong, H. et al. A novel shear-stiffening supramolecular material derived from diboron structure. Sci. China Mater. 66, 4489–4498 (2023). https://doi.org/10.1007/s40843-023-2581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2581-x

Keywords

Navigation