Skip to main content
Log in

Facile preparation of cabazitaxel-loaded nanoparticles directly lyophilized from dioxane

一种用二氧六环制备紫杉醇冻干制剂的简易方法

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Cabazitaxel (CTX) is currently formulated for clinical use in neat liquid surfactant (at a 27:1 mass ratio of Tween-80:CTX). We show here that CTX and Pluronic F127 can be dissolved together in a mixed solvent system comprising water and 1,4-dioxane, two commonly used freeze-drying solvents. This enables the sterile filtration of the mixture, subsequent lyophilization, and aqueous reconstitution of drug-loaded micelles. The micellization properties of the solvent system enabled sterile filtration only at low or high dioxane concentrations. Lyophilizate morphology and reconstituted micelle properties depended on the cosolvent/solvent ratio and the ratio of F127 to CTX, enabling the tuning of the size of reconstituted nanoparticles. A F127-to-CTX mass ratio of 3:1 by the post hydration method using 60% dioxane yielded good batch-to-batch reproducibility and resulted in micelles that were stable for at least 3 h following aqueous reconstitution. Upon intravenous administration to mice, CTX circulation in blood was not dependent on the micelle size and comparable to that of the neat Tween-80 formulation. In vivo antitumor efficacy in mice bearing human MIA Paca-2 tumors was also found comparable to that of the Tween-80 formulation. Taken together, these results demonstrate the utility of a simple CTX formulation methodology to produce a lyophilized drug product with a high drug-to-excipient ratio.

摘要

第二代紫杉醇卡巴他赛(CTX)由于对P-gp糖蛋白的亲和力较低, 具有不易产生耐药性等优点, 被成功地应用于治疗耐药性前列腺癌的 临床治疗中. 由于CTX的疏水性较高, 临床使用的制剂是由液体表面活 性剂Tween-80和乙醇组成的(Tween-80与CTX的质量比为27:1). 而 Tween-80可能在血液中导致溶血问题, 引起过敏反应. 在此工作中, 我 们报道了一种只用少量表面活性剂(pluronic F127与CTX的质量比为 3:1)的冻干CTX的制剂: CTX和Pluronic F127一起溶解在由水和1,4-二 恶烷(两种常用的冷冻干燥溶剂)组成的混合溶剂系统中制成的冻干粉. 胶束状态下的溶剂系统可以经过无菌过滤膜达到除菌效果, 结果表明 在5%和高于60%的1,4-二恶烷浓度下通过过滤才能达到理想的过滤效 果. 冻干CTX制剂和重溶胶束的特性取决于共溶剂/溶剂比和F127与 CTX的比例, 并且能够通过调整比例来调节纳米颗粒的尺寸. 用60%的 1,4-二恶烷溶解质量比为3:1的F127/CTX所得的冻干CTX产物, 重溶后 的胶束在水相中能稳定至少三小时. 在对小鼠进行静脉给药后, 血液中 的CTX浓度不依赖于胶束的粒径大小, 并且血液代谢和纯Tween-80制 剂类似. 小鼠抗肿瘤实验表明小鼠体内MIA Paca-2 肿瘤抑制功效与 Tween-80制剂相似. 综上所述, 此工作报道了一种简单的冻干方法用 于制备紫杉醇药物制剂, 具有制备方法高效和表面活性剂添加量低等 优点.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer, 2004, 4: 253–265

    Article  CAS  Google Scholar 

  2. Green MR, Manikhas GM, Orlov S, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol, 2006, 17: 1263–1268

    Article  CAS  Google Scholar 

  3. Sun B, Straubinger RM, Lovell JF. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res, 2018, 11: 5193–5218

    Article  CAS  Google Scholar 

  4. Sun B, Lovell JF, Zhang Y. Current development of cabazitaxel drug delivery systems. WIREs Nanomed Nanobiotechnol, 2022, e1854

  5. Gradishar WJ. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin Pharmacother, 2006, 7: 1041–1053

    Article  CAS  Google Scholar 

  6. Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol, 2005, 23: 7794–7803

    Article  CAS  Google Scholar 

  7. Gradishar WJ, Krasnojon D, Cheporov S, et al. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J Clin Oncol, 2009, 27: 3611–3619

    Article  CAS  Google Scholar 

  8. Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. Pharmacol Ther, 2017, 42: 742

    Google Scholar 

  9. Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat, 2008, 108: 241–250

    Article  CAS  Google Scholar 

  10. Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res, 2004, 10: 3708–3716

    Article  CAS  Google Scholar 

  11. Vrignaud P, Sémiond D, Lejeune P, et al. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res, 2013, 19: 2973–2983

    Article  CAS  Google Scholar 

  12. Galsky MD, Dritselis A, Kirkpatrick P, et al. Cabazitaxel. Nat Rev Drug Discov, 2010, 9: 677–678

    Article  CAS  Google Scholar 

  13. Rottach AM, Ahrend H, Martin B, et al. Cabazitaxel inhibits prostate cancer cell growth by inhibition of androgen receptor and heat shock protein expression. World J Urol, 2019, 37: 2137–2145

    Article  CAS  Google Scholar 

  14. de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet, 2010, 376: 1147–1154

    Article  CAS  Google Scholar 

  15. Han X, Chen D, Sun J, et al. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time. J BioMater Sci Polym Ed, 2016, 27: 626–642

    Article  CAS  Google Scholar 

  16. Zhuang B, Du L, Xu H, et al. Self-assembled micelle loading cabazitaxel for therapy of lung cancer. Int J Pharm, 2016, 499: 146–155

    Article  CAS  Google Scholar 

  17. Mahdaviani P, Bahadorikhalili S, Navaei-Nigjeh M, et al. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater Sci Eng-C, 2017, 80: 301–312

    Article  CAS  Google Scholar 

  18. He B, Tan T, Wang H, et al. Rational design of tumor microenvironment-activated micelles for programed targeting of breast cancer metastasis. Adv Funct Mater, 2018, 28: 1705622

    Article  Google Scholar 

  19. Zhong T, He B, Cao H, et al. Treating breast cancer metastasis with cabazitaxel-loaded polymeric micelles. Acta Pharmacol Sin, 2017, 38: 924–930

    Article  CAS  Google Scholar 

  20. Aydin O, Youssef I, Yuksel Durmaz Y, et al. Formulation of acid-sensitive micelles for delivery of cabazitaxel into prostate cancer cells. Mol Pharm, 2016, 13: 1413–1429

    Article  CAS  Google Scholar 

  21. Sun B, Chitgupi U, Li C, et al. Surfactant-stripped cabazitaxel micelles stabilized by clotrimazole or mifepristone. Adv Therap, 2020, 3: 1900161

    Article  Google Scholar 

  22. Sun B, Jing H, Mabrouk MT, et al. A surfactant-stripped cabazitaxel micelle formulation optimized with accelerated storage stability. Pharm Dev Tech, 2020, 25: 1281–1288

    Article  CAS  Google Scholar 

  23. Zhang Y, Song W, Geng J, et al. Therapeutic surfactant-stripped frozen micelles. Nat Commun, 2016, 7: 11649

    Article  CAS  Google Scholar 

  24. Barve A, Jain A, Liu H, et al. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater, 2020, 113: 501–511

    Article  CAS  Google Scholar 

  25. Han X, Gong F, Chi L, et al. Cancer-targeted and glutathione-responsive micellar carriers for controlled delivery of cabazitaxel. Nanotechnology, 2018, 30: 055601

    Article  Google Scholar 

  26. Han X, Gong F, Sun J, et al. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery. J Nanopart Res, 2018, 20: 42

    Article  Google Scholar 

  27. Zhou G, Jin X, Zhu P, et al. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel. Anticancer res, 2016, 36: 1649–1656

    CAS  Google Scholar 

  28. Teng L, Lee R, Sun Y, et al. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int J Nanomed, 2016, 11: 3451–3459

    Article  Google Scholar 

  29. Sun Y, Zhao Y, Teng S, et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomed, 2019, 14: 135–148

    Article  CAS  Google Scholar 

  30. Qu N, Sun Y, Xie J, et al. Preparation and evaluation of in vitro self-assembling HSA nanoparticles for cabazitaxel. Anti-Cancer Agents Med Chem, 2017, 17: 294–300

    Article  CAS  Google Scholar 

  31. Meng F, Sun Y, Lee RJ, et al. Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel. Cancers, 2019, 11: 1571

    Article  CAS  Google Scholar 

  32. Sun Y, Lee RJ, Meng F, et al. Microfluidic self-assembly of high cabazitaxel loading albumin nanoparticles. Nanoscale, 2020, 12: 16928–16933

    Article  CAS  Google Scholar 

  33. Kommineni N, Mahira S, Domb A, et al. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects. Pharmaceutics, 2019, 11: 141

    Article  CAS  Google Scholar 

  34. Zeng YY, Zeng YJ, Zhang NN, et al. The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and β-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma. Molecules, 2019, 24: 1697

    Article  CAS  Google Scholar 

  35. Mahira S, Kommineni N, Husain GM, et al. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother, 2019, 110: 803–817

    Article  CAS  Google Scholar 

  36. Li J, Zeng H, You Y, et al. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J Nanobiotechnol, 2021, 19: 289

    Article  CAS  Google Scholar 

  37. Sun B, Ghosh S, He X, et al. Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel. Nano Res, 2022, 15: 4302–4309

    Article  CAS  Google Scholar 

  38. Ahmad A, Sheikh S, Paithankar M, et al. Detergent and alcohol free formulation of cabazitaxel: Safety and pharmacokinetics of escalating dose of cabazitaxel lipid suspension (CLS) in patients with advanced solid maliganancies.. J Clin Oncol, 2016, 34: e14019

    Article  Google Scholar 

  39. Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Industrial Pharmacy, 2016, 42: 1968–1976

    Article  CAS  Google Scholar 

  40. Ren T, Wang Q, Xu Y, et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release, 2018, 269: 423–438

    Article  CAS  Google Scholar 

  41. Kommineni N, Saka R, Bulbake U, et al. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chem Phys Lipids, 2019, 224: 104707

    Article  CAS  Google Scholar 

  42. Zhao Z, Li Y, Liu H, et al. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci Adv, 2020, 6: eabb0616

    Article  CAS  Google Scholar 

  43. Ren T, Gou J, Sun W, et al. Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol Pharm, 2018, 15: 2870–2882

    Article  CAS  Google Scholar 

  44. Chen Y, Deng Y, Zhu C, et al. Anti prostate cancer therapy: Aptamerfunctionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother, 2020, 127: 110181

    Article  CAS  Google Scholar 

  45. Fusser M, Øverbye A, Pandya AD, et al. Cabazitaxel-loaded poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release, 2019, 293: 183–192

    Article  CAS  Google Scholar 

  46. Sulheim E, Mørch Y, Snipstad S, et al. Therapeutic effect of cabazitaxel and blood-brain barrier opening in a patient-derived glioblastoma model. Nanotheranostics, 2019, 3: 103–112

    Article  Google Scholar 

  47. Xue P, Liu D, Wang J, et al. Redox-sensitive citronellol-cabazitaxel conjugate: Maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjugate Chem, 2016, 27: 1360–1372

    Article  CAS  Google Scholar 

  48. Bensaid F, Thillaye du Boullay O, Amgoune A, et al. Y-shaped mPEG-PLA cabazitaxel conjugates: Well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles. Biomacromolecules, 2013, 14: 1189–1198

    Article  CAS  Google Scholar 

  49. Hoang B, Ernsting MJ, Tang WHS, et al. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett, 2017, 410: 169–179

    Article  CAS  Google Scholar 

  50. Xie B, Wan J, Chen X, et al. Preclinical evaluation of a cabazitaxel prodrug using nanoparticle delivery for the treatment of taxane-resistant malignancies. Mol Cancer Ther, 2020, 19: 822–834

    Article  CAS  Google Scholar 

  51. Wan J, Qiao Y, Chen X, et al. Structure-guided engineering of cytotoxic cabazitaxel for an adaptive nanoparticle formulation: Enhancing the drug safety and therapeutic efficacy. Adv Funct Mater, 2018, 28: 1804229

    Article  Google Scholar 

  52. Chen C, Fan R, Wang Y, et al. Hyaluronic acid-conjugated nanoparticles for the targeted delivery of cabazitaxel to CD44-overexpressing glioblastoma cells. j Biomed nanotechnol, 2021, 17: 595–605

    Article  CAS  Google Scholar 

  53. Jangid AK, Pooja D, Jain P, et al. A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Mater Adv, 2020, 1: 738–748

    Article  CAS  Google Scholar 

  54. Park SE, El-Sayed NS, Shamloo K, et al. Targeted delivery of cabazitaxel using cyclic cell-penetrating peptide and biomarkers of extracellular matrix for prostate and breast cancer therapy. Bioconjugate Chem, 2021, 32: 1898–1914

    Article  CAS  Google Scholar 

  55. Marupudi NI, Han JE, Li KW, et al. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf, 2007, 6: 609–621

    Article  CAS  Google Scholar 

  56. Engels FK, Mathot RAA, Verweij J. Alternative drug formulations of docetaxel: A review. Anti-Cancer Drugs, 2007, 18: 95–103

    Article  CAS  Google Scholar 

  57. Nightingale G, Ryu J. Cabazitaxel (jevtana): A novel agent for metastatic castration-resistant prostate cancer. Pharmacol Ther, 2012, 37: 440

    Google Scholar 

  58. Gelderblom H, Verweij J, Nooter K, et al. Cremophor EL. Eur J Cancer, 2001, 37: 1590–1598

    Article  CAS  Google Scholar 

  59. Tsinontides SC, Rajniak P, Pham D, et al. Freeze drying—Principles and practice for successful scale-up to manufacturing. Int J Pharm, 2004, 280: 1–16

    Article  CAS  Google Scholar 

  60. Teagarden DL, Baker DS. Practical aspects of lyophilization using nonaqueous co-solvent systems. Eur J Pharm Sci, 2002, 15: 115–133

    Article  CAS  Google Scholar 

  61. Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin Drug Deliver, 2018, 15: 1085–1104

    Article  CAS  Google Scholar 

  62. Alexandridis P. Poly(ethylene oxide)/poly(propylene oxide) block copolymer surfactants. Curr Opin Colloid Interface Sci, 1997, 2: 478–489

    Article  CAS  Google Scholar 

  63. Lee SH, Lee JE, Baek WY, et al. Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo. J Control Release, 2004, 96: 1–7

    Article  CAS  Google Scholar 

  64. Wittemann A, Azzam T, Eisenberg A. Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin. Langmuir, 2007, 23: 2224–2230

    Article  CAS  Google Scholar 

  65. Bodratti A, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater, 2018, 9: 11

    Article  Google Scholar 

  66. Vrignaud P, Benning V, Beys E, et al. Preclinical profile of cabazitaxel. Drug Design Devel Ther, 2014, 8: 1851

    Article  Google Scholar 

  67. Tellingen OV, Beijnen JH, Verweij J, et al. Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin Cancer Res, 1999, 5: 2918–2924

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health of the US (DP5OD017898 and R01EB017270), the National Science Foundation of the US (1555220), the National Natural Science Foundation of China (32071384), and the National Key Research and Development Program of China (2021YFC2102300).

Author information

Authors and Affiliations

Authors

Contributions

Sun B, Lovell JF and Zhang Y conceived the project and wrote the paper. Sun B and Ghosh S carried out most experiments. Quinn B, Li J, Wang X assisted in animal experiments. Li C assisted in SEM experiments. Shao S and Alexandridis P assisted in manuscript editing. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Jonathan F. Lovell or Yumiao Zhang  (张育淼).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Boyang Sun is an research assistant at the School of Chemical Engineering and Technology, Tianjin University. He obtained his Master degree and Doctorate degree both in chemical engineering from the State University of New York at Buffalo. During his doctoral period, he mainly studied the delivery systems of cabazitaxel including pluronic micelles, liposomes for photodynamic and chemotherapy, and new lyophilized formulations. His current research directions involve metalloimmunotherapy, liposomal formulations for anticancer drugs, and antimicrobial biomaterials.

Yumiao Zhang is a full professor of the School of Chemical Engineering and Technology at Tianjin University. He obtained his dual Bachelor degree from Nankai University and Tianjin University in 2010. And he obtained his PhD degree in chemical engineering from the State University of New York at Buffalo in 2016. His research interest includes molecular imaging, theranostics, immunotherapy and CRSIPR-Cas9 delivery.

Jonathan F Lovell is an empire innovation professor at the Biomedical Engineering Department, University at Buffalo, NY, USA. He received his PhD degree from the University of Toronto. Previously, he completed his MS degree in biochemistry at McMaster University in Hamilton, Ontario and his undergraduate degree at the University of Waterloo in Systems Design Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Shao, S., Ghosh, S. et al. Facile preparation of cabazitaxel-loaded nanoparticles directly lyophilized from dioxane. Sci. China Mater. 66, 2513–2522 (2023). https://doi.org/10.1007/s40843-022-2384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2384-3

Keywords

Navigation