Skip to main content
Log in

Constructing a molecular crystal actuator from pamoic acid with multilevel enhanced photoluminescence by cocrystallization

共结晶法制备具有多级增强光致发光的双羟萘酸分 子晶体驱动器

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

高效的光致发光性能促进了晶体材料的发展. 在本文中, 我们通 过引入溶剂分子报道了两例新的双羟萘酸多组分晶体. 通过聚集诱导 发射和共结晶诱导发射增强, 双羟萘酸多组分晶体的绝对量子产率逐 步增强, 最高达52.99%, 据我们所知, 这是目前报道的最大值. 此外, 随 着溶剂分子逃逸, 该系统表现出温度依赖的荧光响应和热诱导的机械 运动, 包括跳跃、摆动、翻转、移动和旋转. 本工作提出的引入共结晶 组分实现材料发光性能逐级提高的方法对设计刺激响应型光学功能材 料具有指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang H, Zhao Z, Turley AT, et al. Aggregate science: From structures to properties. Adv Mater, 2020, 32: 2001457

    Article  CAS  Google Scholar 

  2. He Z, Zhao W, Lam JWY, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun, 2017, 8: 416

    Article  Google Scholar 

  3. Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun, 2018, 9: 840

    Article  Google Scholar 

  4. Yang Y, Wang J, Li D, et al. Tunable photoresponsive behaviors based on triphenylamine derivatives: The pivotal role of π-conjugated structure and corresponding application. Adv Mater, 2021, 33: 2104002

    Article  CAS  Google Scholar 

  5. Sun H, Sun SS, Han FF, et al. Water-stimuli-responsive dynamic fluorescent switch from Kasha’s rule to anti-Kasha’s rule based on a tetraphenylethene substituted Schiff base. Chem Eng J, 2021, 405: 127000

    Article  CAS  Google Scholar 

  6. Zhao Y, Ding B, Huang Z, et al. Highly efficient organic long persistent luminescence based on host-guest doping systems. Chem Sci, 2022, 13: 8412–8416

    Article  CAS  Google Scholar 

  7. Song J, Ma L, Sun S, et al. Reversible multilevel stimuli-responsiveness and multicolor room-temperature phosphorescence emission based on a single-component system. Angew Chem Int Ed, 2022, 61: e202206157

    Article  CAS  Google Scholar 

  8. Ma L, Wang G, Ding B, et al. Dual-responsive thermally activated delayed fluorescence of spiropyran derivatives. CCS Chem, 2021, 4: 2080–2089

    Article  Google Scholar 

  9. Chung JW, Yoon SJ, An BK, et al. High-contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α-cyanostilbenic moiety. J Phys Chem C, 2013, 117: 11285–11291

    Article  CAS  Google Scholar 

  10. Qi Q, Qian J, Tan X, et al. Remarkable turn-on and color-tuned piezochromic luminescence: Mechanically switching intramolecular charge transfer in molecular crystals. Adv Funct Mater, 2015, 25: 4005–4010

    Article  CAS  Google Scholar 

  11. Yang W, Yang Y, Cao X, et al. On-off switchable thermally activated delayed fluorescence controlled by multiple channels: Understanding the mechanism behind distinctive polymorph-dependent optical properties. Chem Eng J, 2021, 415: 128909

    Article  CAS  Google Scholar 

  12. Li S, Lu B, Fang X, et al. Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed, 2020, 59: 22623–22630

    Article  CAS  Google Scholar 

  13. Zhou B, Yan D. Recent advances of dynamic molecular crystals with light-triggered macro-movements. Appl Phys Rev, 2021, 8: 041310

    Article  CAS  Google Scholar 

  14. Alam P, Leung NLC, Cheng Y, et al. Spontaneous and fast molecular motion at room temperature in the solid state. Angew Chem Int Ed, 2019, 58: 4536–4540

    Article  CAS  Google Scholar 

  15. Liu S, Zhou X, Zhang H, et al. Molecular motion in aggregates: Manipulating TICT for boosting photothermal theranostics. J Am Chem Soc, 2019, 141: 5359–5368

    Article  CAS  Google Scholar 

  16. Zhao Z, Chen C, Wu W, et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat Commun, 2019, 10: 768

    Article  CAS  Google Scholar 

  17. Liu G, Liu J, Liu Y, et al. Oriented single-crystal-to-single-crystal phase transition with dramatic changes in the dimensions of crystals. J Am Chem Soc, 2014, 136: 590–593

    Article  CAS  Google Scholar 

  18. Li S, Hao Y, Guo S, et al. Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission. Sci China Chem, 2022, 65: 408–417

    Article  CAS  Google Scholar 

  19. Zhou B, Yan D. Excitation-dependent organic persistent luminescence. Sci China Chem, 2020, 63: 423–425

    Article  CAS  Google Scholar 

  20. Huang Y, Zhang Q. Manipulating asymmetric photon transport through electrical control: A new strategy to construct optical diodes or isolators. Sci China Chem, 2018, 61: 1351–1352

    Article  CAS  Google Scholar 

  21. Zhou B, Zhao Q, Tang L, et al. Tunable room temperature phosphorescence and energy transfer in ratiometric co-crystals. Chem Commun, 2020, 56: 7698–7701

    Article  CAS  Google Scholar 

  22. Ding B, Ma L, Huang Z, et al. Engendering persistent organic room temperature phosphorescence by trace ingredient incorporation. Sci Adv, 2021, 7: eabf9668

    Article  CAS  Google Scholar 

  23. Kuang W, Liu J, Lin X, et al. Insoluble salt of memantine with a unique fluorescence phenomenon. Mol Pharm, 2022, 19: 1389–1399

    Article  CAS  Google Scholar 

  24. Haynes DA, Van de Streek J, Burley JC, et al. Pamoic acid determined from powder diffraction data. Acta Crystlogr E Struct Rep Online, 2006, 62: o1170–o1172

    Article  CAS  Google Scholar 

  25. Chen Y, Jing B, Chang Z, et al. Desolvation induced crystal jumping: Reversible hydration and dehydration of a spironolactone-saccharin cocrystal with water as the jumping-mate. CrystEngComm, 2021, 23: 6838–6842

    Article  CAS  Google Scholar 

  26. Chen Y, Li J, Gong J. Jumping crystal based on an organic charge transfer complex with reversible on/off switching of luminescence by external thermal stimuli. ACS Mater Lett, 2021, 3: 275–281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21938009 and 21621004) and Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Contributions

Kuang W conceptualized the project, determined the experimental methods, analyzed the results, wrote the manuscript, prepared supporting information, and drew all the figures. Chen Y assisted in organizing ideas for the manuscript, directed the drawing, and revised the manuscript. Jing B assisted with experimental photo shoots and revised the manuscript. Sun G guided the simulation section. Wu S guided the synthesis of the samples. Gong J acquired funding for the whole study. All authors commented on the manuscript.

Corresponding author

Correspondence to Junbo Gong  (龚俊波).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Wenjie Kuang received her Master’s degree from Guangxi University for Nationalities in 2020, and now she is a PhD student at Tianjin University under the supervision of Prof. Junbo Gong. Her current research focuses on the design and synthesis of multicomponent crystals with stimulus-response.

Junbo Gong is a full professor with tenure at the School of Chemical Engineering and Technology, Tianjin University since 2017. His research interests involve many areas of crystal engineering and crystallization process intensification.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, W., Chen, Y., Jing, B. et al. Constructing a molecular crystal actuator from pamoic acid with multilevel enhanced photoluminescence by cocrystallization. Sci. China Mater. 66, 2100–2104 (2023). https://doi.org/10.1007/s40843-022-2362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2362-0

Navigation