Skip to main content
Log in

Enhancing hole extraction via carbon nanotubes/poly(3-hexylthiophene) composite for carbon-based CsPbI2Br solar cells with a new record efficiency

碳纳米管/聚三己基噻吩复合材料增强空穴提取助力碳基CsPbI2Br太阳电池实现新的记录效率

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Carbon-based perovskite solar cells (C-PSCs) benefit from the chemical inertness and hydrophobicity of carbon electrodes, resulting in high stability. Generally, C-PSCs have lower photovoltaic performance than metal electrode-based ones. This is primarily attributed to the low hole extraction efficiency at the interface between the perovskite and the carbon electrode. We synthesized a carbon nanotube/poly(3-hexylthiophene) (CNT/P3HT, denoted as CP) composite as a hole transport material to construct the state-of-the-art C-PSCs. The strong π-π interaction between P3HT and CNTs increases P3HT crystallinity and improves CNT dispersibility. Compared with pure P3HT, CNT in the CP composite provides a high-speed channel for hole transmission, lowering charge transmission impedance and improving hole extraction efficiency. This CP composite was used to assemble CsPbI2Br C-PSCs, resulting in increases in open-circuit voltage from 1.233 to 1.355 V and power conversion efficiency from 13.29% to 15.56%, a new record for all-inorganic perovskite C-PSCs.

摘要

碳基钙钛矿太阳电池(C-PSCs)具有低成本和高稳定性的优势, 这归因于碳电极的化学惰性和疏水性. 然而, C-PSCs的光伏性能通常低于相应的金属电极器件, 其中最重要的原因是钙钛矿层和碳电极之间低的空穴提取效率. 这里, 我们发展了一种基于碳纳米管/聚三己基噻吩(CNT/P3HT, CP)复合材料的空穴传输材料用于构建C-PSCs. P3HT和CNTs之间的强相互作用力增强了P3HT的结晶度, 同时也改善了CNTs的分散性. 相比于纯P3HT, CP复合材料中的CNT提供了空穴传输的高速通道, 进而有效地降低电荷传输阻抗和改善空穴提取效率. 这种CP复合材料被用于组装CsPbI2Br C-PSCs, 其光电压由1.233 V提高到1.355 V, 能量转换效率也由13.29%提高到15.56%, 刷新了碳基全无机钙钛矿太阳电池的记录.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379

    Article  CAS  Google Scholar 

  2. Li Z, Klein TR, Kim DH, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater, 2018, 3: 18017

    Article  CAS  Google Scholar 

  3. Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295–298

    Article  CAS  Google Scholar 

  4. Ren M, Shi J, Chen Y, et al. Cs-content-dependent organic cation exchange in FA1−xCsxPbI3 perovskite. J Energy Chem, 2022, 72: 539–544

    Article  CAS  Google Scholar 

  5. Qin Z, Chen Y, Wang X, et al. Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv Mater, 2022, 34: 2203143

    Article  CAS  Google Scholar 

  6. Zhang D, Yuan J, Tian J. All-inorganic perovskite solar cells with efficiency >20%. Sci China Mater, 2021, 64: 2624–2626

    Article  CAS  Google Scholar 

  7. Jena AK, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem Rev, 2019, 119: 3036–3103

    Article  CAS  Google Scholar 

  8. Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377: 531–534

    Article  CAS  Google Scholar 

  9. Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361: eaat8235

    Article  Google Scholar 

  10. Fu Q, Tang X, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5: 1700387

    Article  Google Scholar 

  11. Chen H, Yang S. Carbon-based perovskite solar cells without hole transport materials: The front runner to the market?. Adv Mater, 2017, 29: 1603994

    Article  Google Scholar 

  12. Wang Y, Li W, Yin Y, et al. Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22%. Adv Funct Mater, 2022, 32: 2204831

    Article  CAS  Google Scholar 

  13. Wang G, Liu J, Chen K, et al. High-performance carbon electrode-based CsPbI2Br inorganic perovskite solar cell based on poly(3-hex-ylthiophene)-carbon nanotubes composite hole-transporting layer. J Colloid Interface Sci, 2019, 555: 180–186

    Article  CAS  Google Scholar 

  14. Shen Y, Deng K, Chen Q, et al. Crowning lithium ions in hole-transport layer toward stable perovskite solar cells. Adv Mater, 2022, 34: 2200978

    Article  CAS  Google Scholar 

  15. Liu C, Igci C, Yang Y, et al. Dopant-free hole transport materials afford efficient and stable inorganic perovskite solar cells and modules. Angew Chem Int Ed, 2021, 60: 20489–20497

    Article  CAS  Google Scholar 

  16. Boyd CC, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119: 3418–3451

    Article  CAS  Google Scholar 

  17. Meng F, Liu A, Gao L, et al. Current progress in interfacial engineering of carbon-based perovskite solar cells. J Mater Chem A, 2019, 7: 8690–8699

    Article  CAS  Google Scholar 

  18. Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci, 2019, 12: 3437–3472

    Article  CAS  Google Scholar 

  19. Hadadian M, Smått JH, Correa-Baena JP. The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ Sci, 2020, 13: 1377–1407

    Article  CAS  Google Scholar 

  20. Bogachuk D, Zouhair S, Wojciechowski K, et al. Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ Sci, 2020, 13: 3880–3916

    Article  CAS  Google Scholar 

  21. Zhang Z, Chen D, Zhu W, et al. Slow halide exchange in CsPbIBr2 films for high-efficiency, carbon-based, all-inorganic perovskite solar cells. Sci China Mater, 2021, 64: 2107–2117

    Article  CAS  Google Scholar 

  22. Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2018, 61: 73–79

    Article  CAS  Google Scholar 

  23. Tian T, Zhong JX, Yang M, et al. Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew Chem Int Ed, 2021, 60: 23735–23742

    Article  CAS  Google Scholar 

  24. Liu G, Tian T, Yang J, et al. Carbon electrode endows high-efficiency perovskite photovoltaics affordable, fully printable, and durable. Sol RRL, 2022, 6: 2200258

    Article  Google Scholar 

  25. Chen H, Yang S. Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. J Mater Chem A, 2019, 7: 15476–15490

    Article  CAS  Google Scholar 

  26. Zheng X, Chen H, Li Q, et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett, 2017, 17: 2496–2505

    Article  CAS  Google Scholar 

  27. Zhang G, Xie P, Huang Z, et al. Modification of energy level alignment for boosting carbon-based CsPbI2 Br solar cells with 14% certified efficiency. Adv Funct Mater, 2021, 31: 2011187

    Article  CAS  Google Scholar 

  28. Mali SS, Patil JV, Shinde PS, et al. Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4: 635–653

    Article  CAS  Google Scholar 

  29. Zeng Q, Zhang X, Feng X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv Mater, 2018, 30: 1705393

    Article  Google Scholar 

  30. Chen H, Pan X, Liu W, et al. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem Commun, 2013, 49: 7277–7279

    Article  CAS  Google Scholar 

  31. Zhang J, Zhang G, Liao Y, et al. Interfacial energy-level alignment via poly-3-hexylthiophene-CsPbI3 quantum dots hybrid hole conductor for efficient carbon-based CsPbI2Br solar cells. Chem Eng J, 2023, 453: 139842

    Article  CAS  Google Scholar 

  32. Obrzut J, Page KA. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys Rev B, 2009, 80: 195211

    Article  Google Scholar 

  33. Sirringhaus H, Brown PJ, Friend RH, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401: 685–688

    Article  CAS  Google Scholar 

  34. Habisreutinger SN, Leijtens T, Eperon GE, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561–5568

    Article  CAS  Google Scholar 

  35. Cai M, Tiong VT, Hreid T, et al. An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J Mater Chem A, 2015, 3: 2784–2793

    Article  CAS  Google Scholar 

  36. Geng J, Zeng T. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J Am Chem Soc, 2006, 128: 16827–16833

    Article  CAS  Google Scholar 

  37. Xiao J, Shi J, Liu H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv Energy Mater, 2015, 5: 1401943

    Article  Google Scholar 

  38. Chu QQ, Ding B, Peng J, et al. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Tech, 2019, 35: 987–993

    Article  CAS  Google Scholar 

  39. Song T, Lee ST, Sun B. Prospects and challenges of organic/group IV nanomaterial solar cells. J Mater Chem, 2012, 22: 4216–4232

    Article  CAS  Google Scholar 

  40. Sfuncia G, Tuccitto N, Marletta G. Preparation and enhanced conducting properties of open networks of poly(3-hexylthiophene)/carbon nanotube hybrids. RSC Adv, 2016, 6: 51485–51492

    Article  CAS  Google Scholar 

  41. Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym Sci, 2010, 35: 357–401

    Article  CAS  Google Scholar 

  42. Pham HD, Yang TC, Jain SM, et al. Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv Energy Mater, 2020, 10: 1903326

    Article  CAS  Google Scholar 

  43. Yu Z, Sun L. Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2: 1700280

    Article  Google Scholar 

  44. Li MH, Liu SC, Qiu FZ, et al. High-efficiency CsPbI2Br perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers. Adv Energy Mater, 2020, 10: 2000501

    Article  CAS  Google Scholar 

  45. Wang W, Lin Y, Zhang G, et al. Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells. J Energy Chem, 2021, 63: 442–451

    Article  CAS  Google Scholar 

  46. Shao Y, Yuan Y, Huang J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat Energy, 2016, 1: 15001

    Article  CAS  Google Scholar 

  47. Zheng X, Chen H, Wei Z, et al. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Front Optoelectron, 2016, 9: 71–80

    Article  Google Scholar 

  48. Zhang G, Zhang J, Liao Y, et al. Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells. Chem Eng J, 2022, 440: 135710

    Article  CAS  Google Scholar 

  49. Zouhair S, Yoo S, Bogachuk D, et al. Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv Energy Mater, 2022, 12: 2200837

    Article  CAS  Google Scholar 

  50. Gong S, Li H, Chen Z, et al. CsPbI2Br perovskite solar cells based on carbon black-containing counter electrodes. ACS Appl Mater Interfaces, 2020, 12: 34882–34889

    Article  CAS  Google Scholar 

  51. Luo D, Su R, Zhang W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater, 2020, 5: 44–60

    Article  CAS  Google Scholar 

  52. Zhang X, Yu Z, Zhang D, et al. Recent progress of carbon-based inorganic perovskite solar cells: From efficiency to stability. Adv Energy Mater, 2022, 2201320

  53. Lu K, Wang Y, Yuan J, et al. Efficient PbS quantum dot solar cells employing a conventional structure. J Mater Chem A, 2017, 5: 23960–23966

    Article  CAS  Google Scholar 

  54. Yang Z, Zhang G, Zhang J, et al. Synergistic passivation by alkali metal and halogenoid ions for high efficiency HTM-free carbon-based CsPbI2Br solar cells. Chem Eng J, 2022, 430: 133083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Laboratory for Lingnan Modern Agriculture (NZ2021030) and the National Natural Science Foundation of China (21975083, U21A20310, 51732004, 22122805, and 22075090).

Author information

Authors and Affiliations

Authors

Contributions

Zhang G and Rao H conceived and designed the experiment. Zhang G carried out the sample preparation and solar cell fabrication. Zhang G and Zhang J conducted characterizations. All authors contributed to the general discussion.

Corresponding author

Correspondence to Huashang Rao  (饶华商).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Guizhi Zhang is pursuing a PhD degree at the South China Agricultural University (SCAU). She received her Master’s degree from Sun Yat-sen University (SYSU) and her Bachelor’s degree from the Northwest Normal University (NWNU). Her primary research is focused on carbon-based perovskite solar cells.

Huashang Rao is an associate professor at SCAU. He received his PhD and BS degrees from SYSU. His research focuses on lead halide perovskite materials and devices, particularly carbon-based perovskite solar cells.

Supplementary Information

40843_2022_2343_MOESM1_ESM.pdf

Enhancing hole extraction via carbon nanotubes/poly(3-hexylthiophene) composite for carbon-based CsPbI2Br solar cells with a new record efficiency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, J., Pan, Z. et al. Enhancing hole extraction via carbon nanotubes/poly(3-hexylthiophene) composite for carbon-based CsPbI2Br solar cells with a new record efficiency. Sci. China Mater. 66, 1727–1735 (2023). https://doi.org/10.1007/s40843-022-2343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2343-7

Keywords

Navigation