Skip to main content
Log in

High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

This work explores the use of poly(3-hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%–40% humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    Article  Google Scholar 

  2. Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591

    Google Scholar 

  3. Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398

    Article  Google Scholar 

  4. Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

    Article  Google Scholar 

  5. Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar Cell. Journal of Physical Chemistry Letters, 2013, 4(15): 2423–2429

    Article  Google Scholar 

  6. Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546

    Article  Google Scholar 

  7. Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903

    Article  Google Scholar 

  8. Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid w-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711

    Article  Google Scholar 

  9. Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 2015, 8(3): 995–1004

    Article  Google Scholar 

  10. Roldán-Carmona C, Gratia P, Zimmermann I, Grancini G, Gao P, Graetzel M, Nazeeruddin M K. High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of nonstoichiometric precursors. Energy & Environmental Science, 2015, 8(12): 3550–3556

    Article  Google Scholar 

  11. Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237

    Article  Google Scholar 

  12. Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399

    Article  Google Scholar 

  13. Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 2013, 6(11): 3249–3253

    Article  Google Scholar 

  14. Batmunkh M, Shearer C J, Biggs MJ, Shapter J G. Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9020–9031

    Article  Google Scholar 

  15. Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14(10): 5561–5568

    Article  Google Scholar 

  16. Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3: 3132

    Article  Google Scholar 

  17. Wang J T W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Low-temperature processed electron collection layers of graphene/ TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14(2): 724–730

    Article  Google Scholar 

  18. Cao J, Liu Y M, Jing X, Yin J, Li J, Xu B, Tan Y Z, Zheng N. Welldefined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2015, 137(34): 10914–10917

    Article  Google Scholar 

  19. Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon, 2015, 93: 861–868

    Article  Google Scholar 

  20. Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane selfassembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793

    Article  Google Scholar 

  21. Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie (International Edition), 2014, 53(48): 13239–13243

    Article  Google Scholar 

  22. Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S. High-performance graphene-based hole conductorfree perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small, 2015, 11(19): 2269–2274

    Article  Google Scholar 

  23. Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L. Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. Journal of Physical Chemistry C, 2015, 119(9): 4600–4605

    Article  Google Scholar 

  24. Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6(18): 10505–10510

    Article  Google Scholar 

  25. Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8(7): 6797–6804

    Article  Google Scholar 

  26. Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Letters, 2015, 15(4): 2402–2408

    Article  Google Scholar 

  27. Wei Z H, Chen H N, Yan K Y, Zheng X L, Yang S H. Hysteresis-free multi-wall carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, doi: 10.1039/C5TA07714A

    Google Scholar 

  28. Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066

    Article  Google Scholar 

  29. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298

    Article  Google Scholar 

  30. Xu M, Rong Y, Ku Z, Mei A, Liu T, Zhang L, Li X, Han H. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(23): 8607–8611

    Article  Google Scholar 

  31. Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9165–9170

    Article  Google Scholar 

  32. Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538

    Article  Google Scholar 

  33. Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy & Environmental Science, 2014, 7(10): 3326–3333

    Article  Google Scholar 

  34. Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An allcarbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830

    Article  Google Scholar 

  35. Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. Journal of Physical Chemistry Letters, 2014, 5(18): 3241–3246

    Article  Google Scholar 

  36. Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Applied Materials & Interfaces, 2014, 6(18): 16140–16146

    Article  Google Scholar 

  37. Chen H N, Wei Z H, Zheng X L, Yang S H. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15: 216–226

    Article  Google Scholar 

  38. Zheng X L, Wei Z H, Chen H N, Bai Y, Xiao S, Zhang T, Yang S H. In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, doi: 10.1016/j.jechem.2015.10.003

    Google Scholar 

  39. Wei Z H, Zheng X L, Chen H N, Long X, Wang Z L, Yang S H. A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(32): 16430–16434

    Article  Google Scholar 

  40. Hao F, Stoumpos C C, Liu Z, Chang R P H, Kanatzidis M G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 2014, 136(46): 16411–16419

    Article  Google Scholar 

  41. Meng D L, Sun J H, Jiang S D, Zeng Y, Li Y, Yan S K, Geng J X, Huang Y. Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. Journal of Materials Chemistry, 2012, 22(40): 21583–21591

    Article  Google Scholar 

  42. Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Advanced Energy Materials, 2015, 5(8): 1401943

    Article  Google Scholar 

  43. Eklund P C, Holden J M, Jishi R A. Vibrational-modes of carbon nanotubes- spectroscopy and theory. Carbon, 1995, 33(7): 959–972

    Article  Google Scholar 

  44. Yang D Q, Rochette J F, Sacher E. Spectroscopic evidence for p-p interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. Journal of Physical Chemistry B, 2005, 109(10): 4481–4484

    Article  Google Scholar 

  45. Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259

    Article  Google Scholar 

  46. D’Urso L, Forte G, Russo P, Caccamo C, Compagnini G, Puglisi O. Surface-enhanced raman scattering study on 1D–2D graphenebased structures. Carbon, 2011, 49(10): 3149–3157

    Article  Google Scholar 

  47. Chen J, Liu H, Weimer WA, Halls MD, Waldeck D H, Walker G C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 2002, 124(31): 9034–9035

    Article  Google Scholar 

  48. Jiang L Q, Gao L. Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties. Journal of Materials Chemistry, 2005, 15(2): 260–266

    Article  MathSciNet  Google Scholar 

  49. Park Y D, Lim J A, Jang Y, Hwang M, Lee H S, Lee D H, Lee H J, Baek J B, Cho K. Enhancement of the field-effect mobility of poly (3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9(3): 317–322

    Article  Google Scholar 

  50. Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185

    Article  Google Scholar 

  51. Irwin M D, Buchholz B, Hains A W, Chang R P H, Marks T J. p- Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2783–2787

    Article  Google Scholar 

  52. Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491

    Article  Google Scholar 

  53. Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. Journal of Physical Chemistry Letters, 2013, 4(9): 1532–1536

    Article  Google Scholar 

  54. Ebadian S, Gholamkhass B, Shambayati S, Holdcroft S, Servati P. Effects of annealing and degradation on regioregular polythiophenebased bulk heterojunction organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94(12): 2258–2264

    Article  Google Scholar 

  55. Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515

    Article  Google Scholar 

  56. Bilkay T, Schulze K, Egorov-Brening T, Bohn A, Janietz S. Copolythiophenes with hydrophilic and hydrophobic side chains: synthesis, characterization, and performance in organic field effect transistors. Macromolecular Chemistry and Physics, 2012, 213(18): 1970–1978

    Article  Google Scholar 

  57. Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860): 188–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihe Yang.

Additional information

Xiaoli Zheng obtained her M.S. degree in 2012 from Zhengzhou University. She is currently a Ph.D. candidate in Prof. Shihe Yang’s group in Department of Chemistry of The Hong Kong University of Science and Technology. Her current research focuses on synthesis of nanomaterials and their applications in perovskite solar cells.

Haining Chen received his Ph.D. degree (2013) in School of Materials Science and Engineering from Beihang University. He is currently a postdoctor in Prof. Shihe Yang’s group in Department of Chemistry of The Hong Kong University of Science and Technology. His current research focuses on perovskite solar cells and photoelectrochemical water splitting.

Zhanhua Wei obtained his B.S. degree in 2011 from Xiamen University. He obtained his Ph.D. degree in 2015 in Prof. Shihe Yang’s group in Department of Chemistry of The Hong Kong University of Science and Technology. His current research focuses on perovskite solar cells and dyesensitized solar cells.

Yinglong Yang acquired his B.S. degree in 2013 from University of Science and Technology of China. He is currently a Ph.D. candidate in Prof. Shihe Yang’s group in Department of Chemistry of The Hong Kong University of Science and Technology. His current research focuses on carbon based perovskite solar cells.

He Lin received his B.S. degree (2015) in College of Chemistry and Life Science from Zhejiang Normal University. He is currently a research assistant in Prof. Shihe Yang’s group in Department of Chemistry of The Hong Kong University of Science and Technology. His current research focuses on hydrogen fuel generation by photoelectrochemical (PEC) water splitting.

Shihe Yang received his B.S. degree in Chemistry from Sun Yat-Sen University and Ph.D. degree in Physical Chemistry (with Prof. Richard E. Smalley). He did his post-doctoral research at Argonne National Laboratory and the University of Toronto (with Prof. John C. Polanyi) before joining the faculty at The Hong Kong University of Science and Technology, where he is currently a full Professor. His current research interests include the understanding, manipulation and applications of low- dimensional nanosystems and energy materials, particularly in novel solar cells and solar fuel devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Chen, H., Wei, Z. et al. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Front. Optoelectron. 9, 71–80 (2016). https://doi.org/10.1007/s12200-016-0566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0566-7

Keywords

Navigation