Skip to main content
Log in

Unveiling the latent reactivity of imines on pyridine-functionalized covalent organic frameworks for H2O2 photosynthesis

吡啶功能化的亚胺类共价有机框架材料在光合成H2O2中的潜在活性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Unveiling the active site for the oxygen reduction reaction (ORR) holds the key to understanding and improving the photocatalytic activity of covalent organic frameworks (COFs) for H2O2 evolution. However, for imine-linked COFs, the role of the imine group is often overlooked in photosynthesis compared with other groups with electrophilicity or light-harvesting capabilities. Herein, a strategy is presented for eliciting the latent photoreactivity of imines by introducing an electron-acceptor structure (pyridine unit) near the imine bonds to enhance the kinetic and thermodynamic advantages of imines for the photocatalytic ORR to H2O2. Experiments and theoretical simulations indicate that the hindered visible light absorption and charge carrier separation caused by the weak electron delocalization can be substantially improved by introducing pyridinic N, leading to full solar spectrum absorption. Meanwhile, the pyridinic N can act with the N atom of the imine as an enhanced site for O2 adsorption and activation, and the strong electron transfers from COFs to O2 and ORR intermediates enable a two-step single-electron reduction route of O2 in pyridine-functionalized COFs for a more feasible H2O2 generation (706.2 µmol g−1 h−1) than original imine-linked COF (372.7 µmol g−1 h−1) under visible light irradiation. This work provides a new idea for designing and modifying imine-linked COFs in advanced photocatalytic applications.

摘要

探究氧还原反应(ORR)进行的位点是了解和提高亚胺类共价有机框架(COFs)材料光催化H2O2演化活性的关键. 然而, 与亚胺COFs中其他具有亲电或光捕获能力的基团相比, 亚胺键在光化学反应中的作用往往被忽视. 因此, 本文提出了一种通过在亚胺键周围引入电子受体结构(吡啶单元)来激发亚胺潜在光反应性的策略, 以增强亚胺在光催化ORR制备H2O2的动力学和热力学优势. 实验和理论模拟结果表明, 吡啶N的引入显著改善了TAPT-PA-COF中由弱电荷离域引起的光谱吸收和载流子分离的不足, 并在TAPT-PDA-COF上表现出全光谱吸收和快速电荷转移特性. 同时, 吡啶N与亚胺N原子共同作为活性位点可提高O2吸附和活化, 增强光生电子在TAPT-PDA-COF表面与反应物分子间的转移. 在可见光照射下, TAPT-PDA-COF的H2O2产率高达706.2 µmol g−1 h−1, 约为TAPT-PA-COF (372.7 µmol g−1 h−1)的1.9倍.该工作为亚胺类COFs在高级光催化应用中的设计和改性提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teranishi M, Naya S, Tada H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J Am Chem Soc, 2010, 132: 7850–7851

    Article  CAS  Google Scholar 

  2. Shiraishi Y, Kanazawa S, Kofuji Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed, 2014, 53: 13454–13459

    Article  CAS  Google Scholar 

  3. Zheng L, Su H, Zhang J, et al. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl Catal B-Environ, 2018, 239: 475–484

    Article  CAS  Google Scholar 

  4. Disselkamp RS. Can aqueous hydrogen peroxide be used as a standalone energy source? Int J Hydrogen Energy, 2010, 35: 1049–1053

    Article  CAS  Google Scholar 

  5. Kato S, Jung J, Suenobu T, et al. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ Sci, 2013, 6: 3756–3764

    Article  CAS  Google Scholar 

  6. Mase K, Yoneda M, Yamada Y, et al. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt(II) chlorin complex. ACS Energy Lett, 2016, 1: 913–919

    Article  CAS  Google Scholar 

  7. Zhao S, Guo T, Li X, et al. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl Catal B-Environ, 2018, 224: 725–732

    Article  CAS  Google Scholar 

  8. Zhang J, Zhang H, Cheng MJ, et al. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts. Small, 2019, 16: 1902845

    Article  Google Scholar 

  9. Hirakawa H, Shiota S, Shiraishi Y, et al. Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal, 2016, 6: 4976–4982

    Article  CAS  Google Scholar 

  10. Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ Sci Technol, 1988, 22: 798–806

    Article  CAS  Google Scholar 

  11. Zhao Y, Liu Y, Wang Z, et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl Catal B-Environ, 2021, 289: 120035

    Article  CAS  Google Scholar 

  12. Yang Y, Zeng Z, Zeng G, et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B-Environ, 2019, 258: 117956

    Article  CAS  Google Scholar 

  13. Shiraishi Y, Kanazawa S, Tsukamoto D, et al. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal, 2013, 3: 2222–2227

    Article  CAS  Google Scholar 

  14. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science, 2017, 355: 6328

    Article  Google Scholar 

  15. Gomes R, Bhanja P, Bhaumik A. A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem Commun, 2015, 51: 10050–10053

    Article  CAS  Google Scholar 

  16. Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc, 2016, 138: 7673–7680

    Article  CAS  Google Scholar 

  17. Liu X, Huang D, Lai C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev, 2019, 48: 5266–5302

    Article  CAS  Google Scholar 

  18. Hu H, Tao Y, Wang D, et al. Rational modification of hydroxy-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide evolution. J Colloid Interface Sci, 2023, 629: 750–762

    Article  CAS  Google Scholar 

  19. Li Y, Song X, Zhang G, et al. 2D covalent organic frameworks toward efficient photocatalytic hydrogen evolution. ChemSusChem, 2022, 15: e202200901

    Article  CAS  Google Scholar 

  20. Tao S, Jiang D. Covalent organic frameworks for energy conversions: Current status, challenges, and perspectives. CCS Chem, 2021, 3: 2003–2024

    Article  CAS  Google Scholar 

  21. Wang H, Wang H, Wang Z, et al. Covalent organic framework photocatalysts: Structures and applications. Chem Soc Rev, 2020, 49: 4135–4165

    Article  CAS  Google Scholar 

  22. Lv Y, Li Y, Zhang G, et al. An in situ film-to-film transformation approach toward highly crystalline covalent organic framework films. CCS Chem, 2022, 4: 1519–1525

    Article  CAS  Google Scholar 

  23. Romero-Muñiz I, Mavrandonakis A, Albacete P, et al. Unveiling the local structure of palladium loaded into imine-linked layered covalent organic frameworks for cross-coupling catalysis. Angew Chem Int Ed, 2020, 59: 13013–13020

    Article  Google Scholar 

  24. Kou M, Wang Y, Xu Y, et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew Chem Int Ed, 2022, 61: e202200413

    Article  CAS  Google Scholar 

  25. Luo J, Wang K, Hua X, et al. Pyridinic-N protected synthesis of 3D nitrogen-doped porous carbon with increased mesoporous defects for oxygen reduction. Small, 2019, 15: 1805325

    Article  Google Scholar 

  26. Uraguchi D, Tsuchiya Y, Ohtani T, et al. Unveiling latent photoreactivity of imines. Angew Chem Int Ed, 2020, 59: 3665–3670

    Article  CAS  Google Scholar 

  27. Sampedro D, Soldevilla A, Rodríguez MA, et al. Mechanism of the N-cyclopropylimine-1-pyrroline photorearrangement. J Am Chem Soc, 2005, 127: 441–448

    Article  CAS  Google Scholar 

  28. Yang Y, Niu H, Xu L, et al. Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Appl Catal B-Environ, 2020, 269: 118799

    Article  CAS  Google Scholar 

  29. Wang H, Yang C, Chen F, et al. A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew Chem Int Ed, 2022, 61: e202202328

    CAS  Google Scholar 

  30. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  32. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  Google Scholar 

  33. Becke AD. Perspective: Fifty years of density-functional theory in chemical physics. J Chem Phys, 2014, 140: 18A301

    Article  Google Scholar 

  34. Kong Y, He X, Wu H, et al. Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering. Angew Chem Int Ed, 2021, 60: 17638–17646

    Article  CAS  Google Scholar 

  35. LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem Res Toxicol, 2014, 27: 1081–1091

    Article  CAS  Google Scholar 

  36. Li D, Song R, Lin H, et al. Pyridinic-N doped porous graphene supported on metal substrates as the promising electrocatalyst for oxygen reduction reaction. Energy Fuels, 2021, 35: 19634–19640

    Article  CAS  Google Scholar 

  37. Lei J, Chen B, Lv W, et al. Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain Chem Eng, 2019, 7: 16467–16473

    Article  CAS  Google Scholar 

  38. Hu H, Kong W, Wang J, et al. Engineering 2D compressed layered g-C3N4 nanosheets by the intercalation of BiVO4−Bi2WO6 composites for boosting photocatalytic activities. Appl Surf Sci, 2021, 557: 149796

    Article  CAS  Google Scholar 

  39. Zhai L, Xie Z, Cui CX, et al. Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem Mater, 2022, 34: 5232–5240

    Article  CAS  Google Scholar 

  40. Wang L, Zhang J, Zhang Y, et al. Inorganic metal-oxide photocatalyst for H2O2 production. Small, 2022, 18: 2104561

    Article  CAS  Google Scholar 

  41. Wang X, Liow C, Bisht A, et al. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv Mater, 2015, 27: 2207–2214

    Article  CAS  Google Scholar 

  42. Jin E, Lan Z, Jiang Q, et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem, 2019, 5: 1632–1647

    Article  CAS  Google Scholar 

  43. Wei S, Zhang F, Zhang W, et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J Am Chem Soc, 2019, 141: 14272–14279

    Article  CAS  Google Scholar 

  44. Yang Y, Zeng G, Huang D, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl Catal B-Environ, 2020, 272: 118970

    Article  CAS  Google Scholar 

  45. Li L, Xu L, Hu Z, et al. Enhanced mass transfer of oxygen through a gas-liquid-solid interface for photocatalytic hydrogen peroxide production. Adv Funct Mater, 2021, 31: 2106120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21776129, 21706121, and U22B6011), the Natural Science Foundation of Jiangsu Province (BK20170995 and BK20201120), and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Kong Y and Zhou S led the whole project. Zhou S and Hu H conceived the concept of material design. Hu H and Hu HK prepared and tested the samples and wrote the paper. Jiang Q participated in data curation. Hu Y contributed to the DFT simulation. Xie H, Li C and Gao S contributed to the sample preparation. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yan Kong  (孔岩) or Yingjie Hu  (胡应杰).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Shijian Zhou received his PhD degree from Ming-Yu Zhou’s group at Southeast University in 2015 and was also a visiting student in Professor Johannes Schwank’s group at the University of Michigan, Ann Arbor. He is now an associate professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Chemical Engineering, Nanjing Tech University. His current research interests include the design of functionalized photocatalysts for advanced applications.

Hao Hu is a PhD student in the group of Professor Yan Kong at the College of Chemical Engineering, Nanjing Tech University, China. His recent work is related to the functionalization of covalent organic frameworks for advanced photocatalytic applications.

Yan Kong received his PhD degree from the Logistic Engineering University of PLA in 2000. He is now a professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Chemical Engineering, Nanjing Tech University. His current research interests include the selective oxidation of aromatic hydrocarbon compounds and the degradation of organic pollutants.

Electronic Supplementary Material

40843_2022_2337_MOESM1_ESM.pdf

Unveiling the latent reactivity of imines on pyridine-functionalized covalent organic frameworks for H2O2 photosynthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Hu, H., Hu, H. et al. Unveiling the latent reactivity of imines on pyridine-functionalized covalent organic frameworks for H2O2 photosynthesis. Sci. China Mater. 66, 1837–1846 (2023). https://doi.org/10.1007/s40843-022-2337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2337-7

Keywords

Navigation