Skip to main content
Log in

Highly stretchable and high-mobility simiconducting nanofibrous blend films for fully stretchable organic transistors

高拉伸高迁移率半导体纳米纤维共混薄膜应用于完 全可拉伸有机晶体管

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Stretchable organic field-effect transistors (OFETs) are fundamental components of organic integrated circuits and wearable biosensors. Stretchable organic semiconductors are core materials to realize high-mobility stretchable OFETs. Achieving polymer semiconductors with both high mobility and high stretchability is an urgent challenge. In this work, high-mobility stretchable semiconducting blend films were prepared by blending a polymer semiconductor with an elastomer. The polymer forms unique nanofibers through the nanoconfinement effect. The as-prepared blend films have low crystallinity and high aggregation degree, resulting in high stretchability and high mobility. Remarkably, the fully stretchable organic transistors exhibit hole maximum mobilities of 2.74 and 2.53 cm2 V−1 s−1 at 0% and 100% strain, respectively. Even at 150% strain, stretchable transistors have a maximum mobility of 1.57 cm2 V−1 s−1. The stretchable transistors show high mechanical robustness during 1000 stretching-releasing cycles at 30% strain.

摘要

可拉伸有机场效应晶体管(OFETs)是有机集成电路和可穿戴生 物传感器的基本组成部分. 可拉伸有机半导体是实现高迁移率可拉伸 OFETs的核心材料. 目前实现高迁移率高拉伸聚合物半导体仍面临挑 战. 在此, 我们通过混合聚合物半导体和弹性体, 制备了高迁移率可拉 伸的半导体共混薄膜. 通过纳米限域效应, 聚合物形成独特的纳米纤维. 半导体薄膜具有低结晶度和高聚集度, 因此该纤维共混薄膜具有高迁 移率和高拉伸性. 我们制备的完全可拉伸的有机晶体管在0%和100%应 变下空穴迁移率分别为2.74和2.53 m2 V−1 s−1. 即使在150%应变下, 可拉 伸晶体管的迁移率也高达1.57 cm2 V−1 s−1. 可拉伸晶体管在30%应变下 的1000个拉伸/释放周期中表现出了高的机械鲁棒性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu F, Liu Y, Zhang J, et al. Recent advances in high-mobility and high-stretchability organic field-effect transistors: From materials, devices to applications. Small Methods, 2021, 5: 2100676

    Article  CAS  Google Scholar 

  2. Yang JC, Mun J, Kwon SY, et al. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater, 2019, 31: 1904765

    Article  CAS  Google Scholar 

  3. Zhang S, Li S, Xia Z, et al. A review of electronic skin: Soft electronics and sensors for human health. J Mater Chem B, 2020, 8: 852–862

    Article  CAS  Google Scholar 

  4. Hong YJ, Jeong H, Cho KW, et al. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater, 2019, 29: 1808247

    Article  Google Scholar 

  5. Wu F, Gao J, Zhai X, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon, 2019, 147: 242–251

    Article  CAS  Google Scholar 

  6. Zheng X, Hu M, Liu Y, et al. High-resolution flexible electronic devices by electrohydrodynamic jet printing: From materials toward applications. Sci China Mater, 2022, 65: 2089–2109

    Article  Google Scholar 

  7. Hammock ML, Chortos A, Tee BCK, et al. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Article  CAS  Google Scholar 

  8. Ren H, Zhang J, Tong Y, et al. Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. J Mater Chem C, 2020, 8: 15646–15654

    Article  CAS  Google Scholar 

  9. Rogers J, Malliaras G, Someya T. Biomedical devices go wild. Sci Adv, 2018, 4: eaav1889

    Article  Google Scholar 

  10. Wang W, Wang S, Rastak R, et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron, 2021, 4: 143–150

    Article  CAS  Google Scholar 

  11. Hu M, Zhang J, Liu Y, et al. Highly conformal polymers for ambulatory electrophysiological sensing. Macromol Rapid Commun, 2022, 43: 2200047

    Article  CAS  Google Scholar 

  12. Luo L, Huang W, Yang C, et al. Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors. Front Phys, 2021, 16: 33500

    Article  Google Scholar 

  13. Zhang Q. Shooting flexible electronics. Front Phys, 2021, 16: 13602

    Article  Google Scholar 

  14. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Article  CAS  Google Scholar 

  15. McCoul D, Hu W, Gao M, et al. Recent advances in stretchable and transparent electronic materials. Adv Electron Mater, 2016, 2: 1500407

    Article  Google Scholar 

  16. White MS, Kaltenbrunner M, Głowacki ED, et al. Ultrathin, highly flexible and stretchable PLEDs. Nat Photon, 2013, 7: 811–816

    Article  CAS  Google Scholar 

  17. Wang B, Zhao C, Wang Z, et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv, 2022, 8: eabk0967

    Article  CAS  Google Scholar 

  18. Sugiyama M, Uemura T, Kondo M, et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat Electron, 2019, 2: 351–360

    Article  Google Scholar 

  19. Root SE, Savagatrup S, Printz AD, et al. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev, 2017, 117: 6467–6499

    Article  CAS  Google Scholar 

  20. Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater, 2010, 22: 2228–2246

    Article  CAS  Google Scholar 

  21. Wen HF, Wu HC, Aimi J, et al. Soft poly(butyl acrylate) side chains toward intrinsically stretchable polymeric semiconductors for field-effect transistor applications. Macromolecules, 2017, 50: 4982–4992

    Article  CAS  Google Scholar 

  22. Hu P, He X, Jiang H. Greater than 10 cm2 V−1 s−1: A breakthrough of organic semiconductors for field-effect transistors. InfoMat, 2021, 3: 613–630

    Article  CAS  Google Scholar 

  23. Guan YS, Thukral A, Zhang S, et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci Adv, 2020, 6: eabb3656

    Article  CAS  Google Scholar 

  24. Chen H, Guo Y, Yu G, et al. Highly π-extended copolymers with di-ketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater, 2012, 24: 4618–4622

    Article  CAS  Google Scholar 

  25. Kang I, Yun HJ, Chung DS, et al. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc, 2013, 135: 14896–14899

    Article  CAS  Google Scholar 

  26. Nketia-Yawson B, Lee HS, Seo D, et al. A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors. Adv Mater, 2015, 27: 3045–3052

    Article  CAS  Google Scholar 

  27. Tseng HR, Ying L, Hsu BBY, et al. High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett, 2012, 12: 6353–6357

    Article  CAS  Google Scholar 

  28. Wu H, Kustra S, Gates EM, et al. Topographic substrates as strain relief features in stretchable organic thin film transistors. Org Electron, 2013, 14: 1636–1642

    Article  CAS  Google Scholar 

  29. Sun Y, Choi WM, Jiang H, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotech, 2006, 1: 201–207

    Article  CAS  Google Scholar 

  30. Lipomi DJ, Tee BCK, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23: 1771–1775

    Article  CAS  Google Scholar 

  31. Graz IM, Cotton DPJ, Robinson A, et al. Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl Phys Lett, 2011, 98: 124101

    Article  Google Scholar 

  32. Lamoureux A, Lee K, Shlian M, et al. Dynamic kirigami structures for integrated solar tracking. Nat Commun, 2015, 6: 8092

    Article  Google Scholar 

  33. Qiu Y, Zhang B, Yang J, et al. Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nat Commun, 2021, 12: 7038

    Article  CAS  Google Scholar 

  34. Chiang YC, Wu HC, Wen HF, et al. Tailoring carbosilane side chains toward intrinsically stretchable semiconducting polymers. Macromolecules, 2019, 52: 4396–4404

    Article  CAS  Google Scholar 

  35. Wu HC, Hung CC, Hong CW, et al. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors. Macromolecules, 2016, 49: 8540–8548

    Article  CAS  Google Scholar 

  36. Wang GJN, Shaw L, Xu J, et al. Inducing elasticity through oligosiloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Funct Mater, 2016, 26: 7254–7262

    Article  CAS  Google Scholar 

  37. Wang GJN, Zheng Y, Zhang S, et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater, 2018, 31: 6465–6475

    Article  Google Scholar 

  38. Oh JY, Rondeau-Gagné S, Chiu YC, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539: 411–415

    Article  CAS  Google Scholar 

  39. Sim K, Rao Z, Kim HJ, et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci Adv, 2019, 5: eaav5749

    Article  Google Scholar 

  40. Xu J, Wang S, Wang GJN, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355: 59–64

    Article  CAS  Google Scholar 

  41. Chiang YC, Shih CC, Tung SH, et al. Blends of polythiophene nano-wire/fluorine rubber with multiscale phase separation suitable for stretchable semiconductors. Polymer, 2018, 155: 146–151

    Article  CAS  Google Scholar 

  42. Choi D, Kim H, Persson N, et al. Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem Mater, 2016, 28: 1196–1204

    Article  CAS  Google Scholar 

  43. Sun T, Scott JI, Wang M, et al. Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater, 2017, 3: 1600388

    Article  Google Scholar 

  44. Mun J, Kang J, Zheng Y, et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv Mater, 2019, 31: 1903912

    Article  CAS  Google Scholar 

  45. Zhang S, Cheng Y, Galuska L, et al. Tacky elastomers to enable tearresistant and autonomous self-healing semiconductor composites. Adv Funct Mater, 2020, 30: 2000663

    Article  CAS  Google Scholar 

  46. Lee JH, Chung JY, Stafford CM. Effect of confinement on stiffness and fracture of thin amorphous polymer films. ACS Macro Lett, 2012, 1: 122–126

    Article  CAS  Google Scholar 

  47. Stafford CM, Harrison C, Beers KL, et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater, 2004, 3: 545–550

    Article  CAS  Google Scholar 

  48. Mun J, Wang GN, Oh JY, et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv Funct Mater, 2018, 28: 1804222

    Article  Google Scholar 

  49. Shiraishi M, Ata M. Work function ofcarbon nanotubes. Carbon, 2001, 39: 1913–1917

    Article  CAS  Google Scholar 

  50. Wang S, Fabiano S, Himmelberger S, et al. Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc Natl Acad Sci USA, 2015, 112: 10599–10604

    Article  CAS  Google Scholar 

  51. Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater, 2013, 12: 1038–1044

    Article  CAS  Google Scholar 

  52. Wang JT, Takshima S, Wu HC, et al. Stretchable conjugated rod-coil poly(3-hexylthiophene)-block-poly(butyl acrylate) thin films for field effect transistor applications. Macromolecules, 2017, 50: 1442–1452

    Article  CAS  Google Scholar 

  53. Stafford CM, Vogt BD, Harrison C, et al. Elastic moduli of ultrathin amorphous polymer films. Macromolecules, 2006, 39: 5095–5099

    Article  CAS  Google Scholar 

  54. O’Connor B, Kline RJ, Conrad BR, et al. Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater, 2011, 21: 3697–3705

    Article  Google Scholar 

  55. Mun J, Ochiai Y, Wang W, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun, 2021, 12: 3572

    Article  CAS  Google Scholar 

  56. Lin YC, Chen FH, Chiang YC, et al. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Appl Mater Interfaces, 2019, 11: 34158–34170

    Article  CAS  Google Scholar 

  57. Zheng Y, Wang GN, Kang J, et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv Funct Mater, 2019, 29: 1905340

    Article  CAS  Google Scholar 

  58. Mun J, Kang J, Zheng Y, et al. F4-TCNQ as an additive to impart stretchable semiconductors with high mobility and stability. Adv Electron Mater, 2020, 6: 2000251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2018YFA0703200), the National Natural Science Foundation of China (51973154) and the Natural Science Foundation of Tianjin (20JCZDJC00680).

Author information

Authors and Affiliations

Authors

Contributions

Yang H conceived and supervised this project. Wu F performed the material preparation and characterization. Wu F conducted the device characterization. Wu F, Liu Y, Zhang J, and Li X wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Hui Yang  (杨辉).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Fuming Wu is a PhD student under the supervision of Prof. Hui Yang at the Department of Chemistry, School of Science, Tianjin University. His research interest is stretchable electronic devices.

Hui Yang is a professor at the Department of Chemistry, School of Science, Tianjin University. He received his PhD from Shandong University in 2012. He subsequently joined Prof. Xi Zhang’s group as a postdoctoral fellow at the Department of Chemistry, Tsinghua University. Since 2014, he has been a research fellow under the supervision of Prof. Xiaodong Chen at the School of Materials Science and Engineering, Nanyang Technological University, Singapore. His research interests focus on flexible and stretchable electronic devices by various flexible micronano fabrication technology for stable human electrophysiological signal sensing and intelligent e-healthcare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Liu, Y., Zhang, J. et al. Highly stretchable and high-mobility simiconducting nanofibrous blend films for fully stretchable organic transistors. Sci. China Mater. 66, 1891–1898 (2023). https://doi.org/10.1007/s40843-022-2331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2331-8

Keywords

Navigation