Skip to main content
Log in

High-resolution flexible electronic devices by electrohydrodynamic jet printing: From materials toward applications

电流体喷印技术制备高分辨率柔性电子器件: 从材料到应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

High-resolution flexible electronic devices are widely used in the fields of soft robotics, smart human-machine interaction, and intelligent e-healthcare monitoring due to their mechanical flexibility, ductility, and compactness. The electrohydrodynamic jet printing (e-jet printing) technique is used for constructing high-resolution and cross-scale flexible electronic devices such as field-effect transistors (FETs), flexible sensors, and flexible displays. As a result, researchers are paying close attention to e-jet printing flexible electronic devices. In this review, we focused on the latest advancements in high-resolution flexible electronics made by e-jet printing technology, including various materials used in e-jet printing inks, the process control of e-jet printing, and their applications. First, we summarized various functional ink materials available for e-jet printing, including organic, inorganic, and hybrid materials. Then, the interface controlling the progress of e-jet printing was discussed in detail, including the physical and chemical properties of the functional ink, the interfacial wettability between the ink and substrate, and the micro-droplet injection behavior in a high-voltage field. Additionally, various applications of e-jet printing in the fields of flexible electrodes, FETs, flexible sensors, and flexible displays were demonstrated. Finally, the future problems and potential associated with the development of next generation e-jet printing technology for flexible electronic devices were also presented.

摘要

高分辨率柔性电子器件因其具有优异的本征柔性、 可延展性和微型化等优点, 被广泛地应用于软体机器人、 智能人机交互和人体健康监测等领域. 电流体动力喷射印刷(电喷印)技术作为一种变革性技术, 可以实现柔性场效应晶体管、 柔性传感器和柔性显示等柔性电子器件的高分辨率和跨尺度制造. 因此, 通过电喷印技术制备高分辨率柔性电子器件引起了国内外研究人员的广泛关注. 本综述重点介绍了电喷印技术在高分辨率柔性电子制造领域的最新研究进展, 其中包括制备电喷印油墨的各种功能材料、 在电喷印刷过程中的界面调控及其应用. 首先, 我们总结了用于电喷印技术的各种功能性墨水材料, 包括有机材料、 无机材料和杂化材料等. 然后, 详细介绍了影响电喷印过程中界面调控的主要因素, 如功能墨水的物理和化学性质、 墨水与基底之间的界面润湿性以及高压场中的微滴喷射行为等. 此外, 还总结了电喷印技术在柔性电极、 柔性场效应晶体管、 柔性传感器和柔性显示等领域的应用前景. 最后, 讨论了电喷印技术在下一代柔性电子设备应用中面临的机遇和挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao Z, Zhang C, Wang W, et al. Advanced artificial muscle for flexible material-based reconfigurable soft robots. Adv Sci, 2019, 6: 1901371

    Article  Google Scholar 

  2. Mousavi S, Howard D, Zhang F, et al. Direct 3D printing of highly anisotropic, flexible, constriction-resistive sensors for multidirectional proprioception in soft robots. ACS Appl Mater Interfaces, 2020, 12: 15631–15643

    Article  CAS  Google Scholar 

  3. Ke X, Zhang S, Chai Z, et al. Flexible discretely-magnetized configurable soft robots via laser-tuned selective transfer printing of anisotropic ferromagnetic cells. Mater Today Phys, 2021, 17: 100313

    Article  Google Scholar 

  4. Xie M, Zhu M, Yang Z, et al. Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing. Nano Energy, 2021, 79: 105438

    Article  CAS  Google Scholar 

  5. Huang J, Yang X, Yu J, et al. A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano Energy, 2020, 69: 104419

    Article  CAS  Google Scholar 

  6. Lu L, Jiang C, Hu G, et al. Flexible noncontact sensing for human-machine interaction. Adv Mater, 2021, 33: 2100218

    Article  CAS  Google Scholar 

  7. Lin Z, Zhang G, Xiao X, et al. A personalized acoustic interface for wearable human-machine interaction. Adv Funct Mater, 2022, 32: 2109430

    Article  CAS  Google Scholar 

  8. Wang L, Liu W, Yan Z, et al. Stretchable and shape-adaptable tribo-electric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv Funct Mater, 2020, 31: 2007221

    Article  CAS  Google Scholar 

  9. Kim J, Campbell AS, de Ávila BEF, et al. Wearable biosensors for healthcare monitoring. Nat Biotechnol, 2019, 37: 389–406

    Article  CAS  Google Scholar 

  10. Song L, Chen J, Xu BB, et al. Flexible plasmonic biosensors for healthcare monitoring: Progress and prospects. ACS Nano, 2021, 15: 18822–18847

    Article  CAS  Google Scholar 

  11. Zhang N, Li Y, Xiang S, et al. Imperceptible sleep monitoring bedding for remote sleep healthcare and early disease diagnosis. Nano Energy, 2020, 72: 104664

    Article  CAS  Google Scholar 

  12. Hong YJ, Jeong H, Cho KW, et al. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater, 2019, 29: 1808247

    Article  CAS  Google Scholar 

  13. Guo J, Yu Y, Cai L, et al. Microfluidics for flexible electronics. Mater Today, 2021, 44: 105–135

    Article  CAS  Google Scholar 

  14. Zhao D, Zhu Y, Cheng W, et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater, 2021, 33: 2000619

    Article  CAS  Google Scholar 

  15. Wang D, Zhang Y, Lu X, et al. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem Soc Rev, 2018, 47: 4611–4641

    Article  CAS  Google Scholar 

  16. Gao W, Ota H, Kiriya D, et al. Flexible electronics toward wearable sensing. Acc Chem Res, 2019, 52: 523–533

    Article  CAS  Google Scholar 

  17. Wang P, Hu M, Wang H, et al. The evolution of flexible electronics: From nature, beyond nature, and to nature. Adv Sci, 2020, 7: 2001116

    Article  CAS  Google Scholar 

  18. Du C, Zhang M, Huang Q, et al. Ultralow-voltage all-carbon low-dimensional-material flexible transistors integrated by room-temperature photolithography incorporated filtration. Nanoscale, 2019, 11: 15029–15036

    Article  CAS  Google Scholar 

  19. Zhang Y, Mei Z, Huo W, et al. Self-aligned photolithography for the fabrication of flexible transparent high-voltage thin film transistors, diodes and inverters. MicroElectron Eng, 2018, 199: 92–95

    Article  CAS  Google Scholar 

  20. Fukuda K, Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv Mater, 2017, 29: 1602736

    Article  CAS  Google Scholar 

  21. Li D, Lai WY, Zhang YZ, et al. Printable transparent conductive films for flexible electronics. Adv Mater, 2018, 30: 1704738

    Article  CAS  Google Scholar 

  22. Abdolmaleki H, Kidmose P, Agarwala S. Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv Mater, 2021, 33: 2006792

    Article  CAS  Google Scholar 

  23. Hyun WJ, Secor EB, Hersam MC, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27: 109–115

    Article  CAS  Google Scholar 

  24. Duan S, Gao X, Wang Y, et al. Scalable fabrication of highly crystalline organic semiconductor thin film by channel-restricted screen printing toward the low-cost fabrication of high-performance transistor arrays. Adv Mater, 2019, 31: 1807975

    Article  CAS  Google Scholar 

  25. Cao X, Chen H, Gu X, et al. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano, 2014, 8: 12769–12776

    Article  CAS  Google Scholar 

  26. Kang TH, Chang H, Choi D, et al. Hydrogel-templated transfer-printing of conductive nanonetworks for wearable sensors on topographic flexible substrates. Nano Lett, 2019, 19: 3684–3691

    Article  CAS  Google Scholar 

  27. Linghu C, Zhang S, Wang C, et al. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex Electron, 2018, 2: 26

    Article  CAS  Google Scholar 

  28. Park J, Lee Y, Lee H, et al. Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano, 2020, 14: 12–20

    Article  CAS  Google Scholar 

  29. Vuorinen T, Niittynen J, Kankkunen T, et al. Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci Rep, 2016, 6: 35289

    Article  CAS  Google Scholar 

  30. Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. J Mater Chem C, 2017, 5: 2971–2993

    Article  CAS  Google Scholar 

  31. Zhao N, Chiesa M, Sirringhaus H, et al. Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. J Appl Phys, 2007, 101: 064513

    Article  CAS  Google Scholar 

  32. Godard N, Glinšek S, Matavž A, et al. Direct patterning of piezoelectric thin films by inkjet printing. Adv Mater Technol, 2019, 4: 1800168

    Article  CAS  Google Scholar 

  33. Mkhize N, Murugappan K, Castell MR, et al. Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors. J Mater Chem C, 2021, 9: 4591–4596

    Article  CAS  Google Scholar 

  34. Lee KH, Lee SS, Ahn DB, et al. Ultrahigh areal number density solidstate on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci Adv, 2020, 6: eaaz1692

    Article  CAS  Google Scholar 

  35. Li X, Go M, Lim S, et al. Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors. Org Electron, 2019, 73: 279–285

    Article  CAS  Google Scholar 

  36. Wu C, Tetik H, Cheng J, et al. Electrohydrodynamic jet printing driven by a triboelectric nanogenerator. Adv Funct Mater, 2019, 29: 1901102

    Article  CAS  Google Scholar 

  37. Li H, Duan Y, Shao Z, et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv Mater Technol, 2020, 5: 2000401

    Article  CAS  Google Scholar 

  38. Can TTT, Kwack YJ, Choi WS. Drop-on-demand patterning of MoS2 using electrohydrodynamic jet printing for thin-film transistors. Mater Des, 2021, 199: 109408

    Article  CAS  Google Scholar 

  39. Yan Q, You J, Sun W, et al. Advances in piezoelectric jet and atomization devices. Appl Sci, 2021, 11: 5093

    Article  CAS  Google Scholar 

  40. Zhou C, Deng G, Li J, et al. Flow channel influence of a collision-based piezoelectric jetting dispenser on jet performance. Sensors, 2018, 18: 1270

    Article  Google Scholar 

  41. Paul KE, Wong WS, Ready SE, et al. Additive jet printing of polymer thin-film transistors. Appl Phys Lett, 2003, 83: 2070–2072

    Article  CAS  Google Scholar 

  42. Phung TH, Kim S, Kwon KS. A high speed electrohydrodynamic (EHD) jet printing method for line printing. J Micromech Microeng, 2017, 27: 095003

    Article  CAS  Google Scholar 

  43. Ahn JH, Choi JH, Lee CY. Electrical evaluations of anisotropic conductive film manufactured by electrohydrodynamic ink jet printing technology. Org Electron, 2020, 78: 105561

    Article  CAS  Google Scholar 

  44. Onses MS, Sutanto E, Ferreira PM, et al. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small, 2015, 11: 4237–4266

    Article  CAS  Google Scholar 

  45. Chang J, He J, Lei Q, et al. Electrohydrodynamic printing of micro-scale PEDOT:PSS-PEO features with tunable conductive/thermal properties. ACS Appl Mater Interfaces, 2018, 10: 19116–19122

    Article  CAS  Google Scholar 

  46. Li K, Wang D, Yi S, et al. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement. Rev Sci Instruments, 2019, 90: 115001

    Article  CAS  Google Scholar 

  47. Yang SM, Lee YS, Jang Y, et al. Electromechanical reliability of a flexible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. Microelectron Reliab, 2016, 65: 151–159

    Article  CAS  Google Scholar 

  48. Chen Y, Shafiq M, Liu M, et al. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Mater, 2020, 5: 963–979

    Article  Google Scholar 

  49. Ding H, Zhu C, Tian L, et al. Structural color patterns by electrohydrodynamic jet printed photonic crystals. ACS Appl Mater Interfaces, 2017, 9: 11933–11941

    Article  CAS  Google Scholar 

  50. Liu X, Ding W, Wu Y, et al. Penicillamine-protected Ag20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. Nanoscale, 2017, 9: 3986–3994

    Article  CAS  Google Scholar 

  51. Wang X, Sun F, Huang Y, et al. A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth. Chem Commun, 2015, 51: 3117–3120

    Article  CAS  Google Scholar 

  52. Novak S, Lin PT, Li C, et al. Direct electrospray printing of gradient refractive index chalcogenide glass films. ACS Appl Mater Interfaces, 2017, 9: 26990–26995

    Article  CAS  Google Scholar 

  53. Li X, Kwon H, Qi X, et al. Direct-patterned copper/poly(ethylene oxide) composite electrodes for organic thin-film transistors through cone-jet mode by electrohydrodynamic jet printing. J Indust Eng Chem, 2020, 85: 269–275

    Article  CAS  Google Scholar 

  54. Tang X, Jo Y, Kwon HJ, et al. Electrohydrodynamic-jet-printed cinnamate-fluorinated cross-linked polymeric dielectrics for flexible and electrically stable operating organic thin-film transistors and integrated devices. ACS Appl Mater Interfaces, 2021, 13: 50149–50162

    Article  CAS  Google Scholar 

  55. Liang Y, Yong J, Yu Y, et al. Direct electrohydrodynamic patterning of high-performance all metal oxide thin-film electronics. ACS Nano, 2019, 13: 13957–13964

    Article  CAS  Google Scholar 

  56. Du X, Durgan CJ, Matthews DJ, et al. Fabrication of a flexible amperometric glucose sensor using additive processes. ECS J Solid State Sci Technol, 2015, 4: P3069–P3074

    Article  CAS  Google Scholar 

  57. Ye D, Ding Y, Duan Y, et al. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small, 2018, 14: 1703521

    Article  CAS  Google Scholar 

  58. Hong S, Na JW, Lee IS, et al. Simultaneously defined semiconducting channel layer using electrohydrodynamic jet printing of a passivation layer for oxide thin-film transistors. ACS Appl Mater Interfaces, 2020, 12: 39705–39712

    Article  CAS  Google Scholar 

  59. Li X, Park H, Lee MH, et al. High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Org Electron, 2018, 62: 400–406

    Article  CAS  Google Scholar 

  60. Qin H, Dong J, Lee YS. Fabrication and electrical characterization of multi-layer capacitive touch sensors on flexible substrates by additive e-jet printing. J Manufact Proc, 2017, 28: 479–485

    Article  Google Scholar 

  61. Mirza F, Sahasrabuddhe RR, Baptist JR, et al. Piezoresistive pressure sensor array for robotic skin. In: Popa D, Muthu BJW (eds.). Proceeding of SPIE Commercial + Scientific Sensing and Imaging, Baltimore, USA, 2016, 9859: 98590K-1

  62. Kang K, Yang D, Park J, et al. Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications. Sens Actuat B-Chem, 2017, 250: 574–583

    Article  CAS  Google Scholar 

  63. Zhao K, Wang D, Li K, et al. Drop-on-demand electrohydrodynamic jet printing of graphene and its composite microelectrode for high performance electrochemical sensing. J Electrochem Soc, 2020, 167: 107508

    Article  CAS  Google Scholar 

  64. Dong H, Zhang L, Wu T, et al. Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing. Org Electron, 2021, 89: 106044

    Article  CAS  Google Scholar 

  65. Prasetyo FD, Yudistira HT, Dat Nguyen V, et al. Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DoD) operation. J Micromech Microeng, 2013, 23: 095028

    Article  CAS  Google Scholar 

  66. Duan Y, Ding Y, Xu Z, et al. Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers. Polymers, 2017, 9: 434

    Article  CAS  Google Scholar 

  67. Kwon H, Li X, Hong J, et al. Non-lithographic direct patterning of carbon nanomaterial electrodes via electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic field-effect transistor. Appl Surf Sci, 2020, 515: 145989

    Article  CAS  Google Scholar 

  68. Huang YA, Ding Y, Bian J, et al. Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40: 432–439

    Article  CAS  Google Scholar 

  69. Chen X, Shao J, An N, et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C, 2015, 3: 11806–11814

    Article  CAS  Google Scholar 

  70. Kim BH, Onses MS, Lim JB, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett, 2015, 15: 969–973

    Article  CAS  Google Scholar 

  71. Wang Q, Zhang G, Zhang H, et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Funct Mater, 2021, 31: 2100857

    Article  CAS  Google Scholar 

  72. Cho TH, Farjam N, Allemang CR, et al. Area-selective atomic layer deposition patterned by electrohydrodynamic jet printing for additive manufacturing of functional materials and devices. ACS Nano, 2020, 14: 17262–17272

    Article  CAS  Google Scholar 

  73. Yan K, Li J, Pan L, et al. Inkjet printing for flexible and wearable electronics. APL Mater, 2020, 8: 120705

    Article  CAS  Google Scholar 

  74. Cai S, Sun Y, Wang Z, et al. Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing. Nanotechnol Rev, 2021, 10: 1046–1078

    Article  CAS  Google Scholar 

  75. Wang Y, Ding Y, Guo X, et al. Conductive polymers for stretchable supercapacitors. Nano Res, 2019, 12: 1978–1987

    Article  CAS  Google Scholar 

  76. Grancarić AM, Jerković I, Koncar V, et al. Conductive polymers for smart textile applications. J Indust Text, 2017, 48: 612–642

    Article  CAS  Google Scholar 

  77. Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater, 2018, 30: 1802560

    Article  CAS  Google Scholar 

  78. Li H, Ma Y, Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: A review. Mater Horiz, 2021, 8: 383–400

    Article  CAS  Google Scholar 

  79. Park SH, Kim J, Lee S, et al. Organic thin-film transistors with sub-10-micrometer channel length with printed polymer/carbon nanotube electrodes. Org Electron, 2018, 52: 165–171

    Article  CAS  Google Scholar 

  80. Tang X, Kwon HJ, Ye H, et al. Enhanced solvent resistance and electrical performance of electrohydrodynamic jet printed PEDOT: PSS composite patterns: Effects of hardeners on the performance of organic thin-film transistors. Phys Chem Chem Phys, 2019, 21: 25690–25699

    Article  CAS  Google Scholar 

  81. Jung EM, Lee SW, Kim SH. Printed ion-gel transistor using electrohydrodynamic (EHD) jet printing process. Org Electron, 2018, 52: 123–129

    Article  CAS  Google Scholar 

  82. Ouyang J. Application of intrinsically conducting polymers in flexible electronics. SmartMat, 2021, 2: 263–285

    Article  Google Scholar 

  83. Corletto A, Shapter JG. High-resolution and scalable printing of highly conductive PEDOT:PSS for printable electronics. J Mater Chem C, 2021, 9: 14161–14174

    Article  CAS  Google Scholar 

  84. Adekoya GJ, Sadiku RE, Ray SS. Nanocomposites of PEDOT:PSS with graphene and its derivatives for flexible electronic applications: A review. Macromol Mater Eng, 2021, 306: 2000716

    Article  CAS  Google Scholar 

  85. Lv G, Wang H, Tong Y, et al. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv Mater Interfaces, 2020, 7: 2000306

    Article  CAS  Google Scholar 

  86. Root SE, Savagatrup S, Printz AD, et al. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev, 2017, 117: 6467–6499

    Article  CAS  Google Scholar 

  87. Jeong YJ, Lee H, Lee BS, et al. Directly drawn poly(3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: Improving performance with surface modification. ACS Appl Mater Interfaces, 2014, 6: 10736–10743

    Article  CAS  Google Scholar 

  88. Kim K, Bae J, Noh SH, et al. Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J Phys Chem Lett, 2017, 8: 5492–5500

    Article  CAS  Google Scholar 

  89. Jung C, Tang X, Kwon H, et al. Electrohydrodynamic-printed polyvinyl alcohol-based gate insulators for organic integrated devices. Adv Eng Mater, 2021, 2100900

  90. Jiang H, Tang C, Wang Y, et al. Low content and low-temperature cured silver nanoparticles/silver ion composite ink for flexible electronic applications with robust mechanical performance. Appl Surf Sci, 2021, 564: 150447

    Article  CAS  Google Scholar 

  91. Can TTT, Nguyen TC, Choi WS. High-viscosity copper paste patterning and application to thin-film transistors using electrohydrodynamic jet printing. Adv Eng Mater, 2020, 22: 1901384

    Article  CAS  Google Scholar 

  92. Jeong YJ, Lee X, Bae J, et al. Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors. J Mater Chem C, 2016, 4: 4912–4919

    Article  CAS  Google Scholar 

  93. Zhu M, Duan Y, Liu N, et al. Electrohydrodynamically printed highresolution full-color hybrid perovskites. Adv Funct Mater, 2019, 29: 1903294

    Article  CAS  Google Scholar 

  94. Li X, Kim K, Oh H, et al. Cone-jet printing of aligned silver nanowire/poly(ethylene oxide) composite electrodes for organic thin-film transistors. Org Electron, 2019, 69: 190–199

    Article  CAS  Google Scholar 

  95. Tang X, Girma HG, Li Z, et al. “Dragging mode” electrohydrodynamic jet printing of polymer-wrapped semiconducting single-walled carbon nanotubes for no gas-sensing field-effect transistors. J Mater Chem C, 2021, 9: 15804–15812

    Article  CAS  Google Scholar 

  96. Kim K, Kim C, Jo Y, et al. Boosting the ambipolar field-effect transistor performance of a DPP-based copolymer via electrohydrodynamic-jet direct writing. J Industrial Eng Chem, 2019, 78: 172–177

    Article  CAS  Google Scholar 

  97. Yu H, Chen Y, Wei H, et al. High-k polymeric gate insulators for organic field-effect transistors. Nanotechnology, 2019, 30: 202002

    Article  CAS  Google Scholar 

  98. Kwon H, Ye H, An TK, et al. Highly stable flexible organic field-effect transistors with parylene-C gate dielectrics on a flexible substrate. Org Electron, 2019, 75: 105391

    Article  CAS  Google Scholar 

  99. Liu F, Liu X, Gu H. Multi-network poly(β-cyclodextrin)/PVA/gelatin/carbon nanotubes composite hydrogels constructed by multiple dynamic crosslinking as flexible electronic devices. Macro Mater Eng, 2022, 307: 2100724

    Article  CAS  Google Scholar 

  100. Jiang L, Huang Y, Zhang X, et al. Electrohydrodynamic inkjet printing of polydimethylsiloxane (PDMS). Proc Manufact, 2020, 48: 90–94

    Article  Google Scholar 

  101. Zhou P, Yu H, Zou W, et al. High-resolution and controllable nanodeposition pattern of Ag nanoparticles by electrohydrodynamic jet printing combined with coffee ring effect. Adv Mater Interfaces, 2019, 6: 1900912

    Article  CAS  Google Scholar 

  102. Chang Y, Wang DY, Tai YL, et al. Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink. J Mater Chem, 2012, 22: 25296–25301

    Article  CAS  Google Scholar 

  103. Wu JT, Hsu SLC, Tsai MH, et al. Direct ink-jet printing of silver nitrate-silver nanowire hybrid inks to fabricate silver conductive lines. J Mater Chem, 2012, 22: 15599–15605

    Article  CAS  Google Scholar 

  104. Guo Y, Wei X, Gao S, et al. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater, 2021, 31: 2104288

    Article  CAS  Google Scholar 

  105. Zhang B, Lee J, Kim M, et al. Direct patterning and spontaneous self-assembly of graphene oxide via electrohydrodynamic jet printing for energy storage and sensing. Micromachines, 2019, 11: 13

    Article  Google Scholar 

  106. Liu Z, Zhou B, Li C, et al. Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. Eur Polym J, 2021, 159: 110730

    Article  CAS  Google Scholar 

  107. Zhang B, He J, Zheng G, et al. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. J Mater Sci Tech, 2021, 82: 135–143

    Article  CAS  Google Scholar 

  108. Braly IL, deQuilettes DW, Pazos-Outón LM, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat Photon, 2018, 12: 355–361

    Article  CAS  Google Scholar 

  109. Kroupa DM, Roh JY, Milstein TJ, et al. Quantum-cutting ytterbium-doped CsPb(Cl1−xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett, 2018, 3: 2390–2395

    Article  CAS  Google Scholar 

  110. Li Z, Chen Z, Yang Y, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun, 2019, 10: 1027

    Article  CAS  Google Scholar 

  111. Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562: 249–253

    Article  CAS  Google Scholar 

  112. Mampallil D, Eral HB. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci, 2018, 252: 38–54

    Article  CAS  Google Scholar 

  113. Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line. Adv Opt Mater, 2014, 2: 34–38

    Article  CAS  Google Scholar 

  114. Li H, Liu N, Shao Z, et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J Mater Chem C, 2019, 7: 14867–14873

    Article  CAS  Google Scholar 

  115. Yunker PJ, Still T, Lohr MA, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476: 308–311

    Article  CAS  Google Scholar 

  116. Anyfantakis M, Geng Z, Morel M, et al. Modulation of the coffee-ring effect in particle/surfactant mixtures: The importance of particle-interface interactions. Langmuir, 2015, 31: 4113–4120

    Article  CAS  Google Scholar 

  117. Cui L, Zhang J, Zhang X, et al. Suppression of the coffee ring effect by hydrosoluble polymer additives. ACS Appl Mater Interfaces, 2012, 4: 2775–2780

    Article  CAS  Google Scholar 

  118. Liu Y, Li F, Qiu L, et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano, 2019, 13: 2042–2049

    CAS  Google Scholar 

  119. Guo L, Duan Y, Huang YA, et al. Experimental study of the influence of ink properties and process parameters on ejection volume in electrohydrodynamic jet printing. Micromachines, 2018, 9: 522

    Article  Google Scholar 

  120. Bae J, Lee J, Kim SH. Effects of polymer properties on jetting performance of electrohydrodynamic printing. J Appl Polym Sci, 2017, 134: 45044

    Article  CAS  Google Scholar 

  121. Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens J, 2014, 15: 3164–3185

    Article  Google Scholar 

  122. MacDonald WA, Looney MK, MacKerron D, et al. Latest advances in substrates for flexible electronics. J Soc Inf Display, 2007, 15: 1075–1083

    Article  CAS  Google Scholar 

  123. Zardetto V, Brown TM, Reale A, et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B Polym Phys, 2011, 49: 638–648

    Article  CAS  Google Scholar 

  124. Choi MC, Kim Y, Ha CS. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33: 581–630

    Article  CAS  Google Scholar 

  125. Kumaresan Y, Lee R, Lim N, et al. Extremely flexible indium-gallium-zinc oxide (IGZO) based electronic devices placed on an ultrathin poly (methyl methacrylate) (PMMA) substrate. Adv Electron Mater, 2018, 4: 1800167

    Article  CAS  Google Scholar 

  126. Puneetha P, Mallem SPR, Lee YW, et al. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronic effect. ACS Appl Mater Interfaces, 2020, 12: 36660–36669

    Article  CAS  Google Scholar 

  127. Zhang C, Li H, Huang A, et al. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small, 2019, 15: 1805493

    Article  CAS  Google Scholar 

  128. Wang D, Zhou X, Song R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micro-pattern for physiological signals monitoring. Chem Eng J, 2021, 404: 126940

    Article  CAS  Google Scholar 

  129. Li Y, Wen D, Zhang Y, et al. Highly-stable PEN as a gas-barrier substrate for flexible displays via atomic layer infiltration. Dalton Trans, 2021, 50: 16166–16175

    Article  CAS  Google Scholar 

  130. Bera A, Deb K, Kathirvel V, et al. Flexible diode of polyaniline/ITO heterojunction on pet substrate. Appl Surf Sci, 2017, 418: 264–269

    Article  CAS  Google Scholar 

  131. Park SJ, Ko TJ, Yoon J, et al. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates. Appl Surf Sci, 2018, 427: 1–9

    Article  CAS  Google Scholar 

  132. Su S, Liang J, Li X, et al. Direct microtip focused electrohydrodynamic jet printing of tailored microlens arrays on PDMS nanofilm-modified substrate. Adv Mater Technol, 2021, 6: 2100449

    Article  CAS  Google Scholar 

  133. Kim Y, Bae J, Song HW, et al. Directionally aligned amorphous polymer chains via electrohydrodynamic-jet printing: Analysis of morphology and polymer field-effect transistor characteristics. ACS Appl Mater Interfaces, 2017, 9: 39493–39501

    Article  CAS  Google Scholar 

  134. Ren P, Liu Y, Song R, et al. Achieving high-resolution electrohydrodynamic printing of nanowires on elastomeric substrates through surface modification. ACS Appl Electron Mater, 2020, 3: 192–202

    Article  CAS  Google Scholar 

  135. Cheng E, Yang X, Yin Z, et al. Fabrication of poly(methyl methacrylate) nozzles for electrohydrodynamic printing. J Nanosci Nanotechnol, 2021, 21: 3249–3255

    Article  CAS  Google Scholar 

  136. Li Z, Al-Milaji KN, Zhao H, et al. Ink bridge control in the electrohydrodynamic printing with a coaxial nozzle. J Manufact Proc, 2020, 60: 418–425

    Article  Google Scholar 

  137. Li Z, Al-Milaji KN, Zhao H, et al. Electrohydrodynamic (EHD) jet printing with a circulating dual-channel nozzle. J Micromech Microeng, 2019, 29: 035013

    Article  CAS  Google Scholar 

  138. Zou W, Yu H, Zhou P, et al. Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition. Mater Des, 2019, 166: 107609

    Article  Google Scholar 

  139. Wang D, Zhao X, Lin Y, et al. Nanoscale coaxial focused electrohydrodynamic jet printing. Nanoscale, 2018, 10: 9867–9879

    Article  CAS  Google Scholar 

  140. Su S, Liang J, Wang Z, et al. Microtip focused electrohydrodynamic jet printing with nanoscale resolution. Nanoscale, 2020, 12: 24450–24462

    Article  CAS  Google Scholar 

  141. Khan A, Rahman K, Kim DS, et al. Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. J Mater Processing Tech, 2012, 212: 700–706

    Article  CAS  Google Scholar 

  142. Tse L, Barton K. Airflow assisted printhead for high-resolution electrohydrodynamic jet printing onto non-conductive and tilted surfaces. Appl Phys Lett, 2015, 107: 054103

    Article  CAS  Google Scholar 

  143. Huang S, Liu Y, Zhao Y, et al. Flexible electronics: Stretchable electrodes and their future. Adv Funct Mater, 2018, 29: 1805924

    Article  CAS  Google Scholar 

  144. Chen Y, Li X, Bi Z, et al. Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors. Chem Eng J, 2018, 353: 499–506

    Article  CAS  Google Scholar 

  145. Yu Y, Xiao X, Zhang Y, et al. Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv Mater, 2016, 28: 4926–4934

    Article  CAS  Google Scholar 

  146. Zhu X, Liu M, Qi X, et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv Mater, 2021, 33: 2007772

    Article  CAS  Google Scholar 

  147. Wu F, Liu Y, Zhang J, et al. Recent advances in high-mobility and high-stretchability organic field-effect transistors: From materials, devices to applications. Small Methods, 2021, 5: 2100676

    Article  CAS  Google Scholar 

  148. Sun M, Zhang C, Chen D, et al. Ultrasensitive and stable all graphene field-effect transistor-based Hg2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat, 2021, 2: 213–225

    Article  Google Scholar 

  149. Yang J, Zhao Z, Wang S, et al. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem, 2018, 4: 2748–2785

    Article  CAS  Google Scholar 

  150. Chen H, Zhang W, Li M, et al. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem Rev, 2020, 120: 2879–2949

    Article  CAS  Google Scholar 

  151. Reese C, Bao Z. Organic single-crystal field-effect transistors. Mater Today, 2007, 10: 20–27

    Article  CAS  Google Scholar 

  152. Ye H, Kwon HJ, Tang X, et al. Direct patterned zinc-tin-oxide for solution-processed thin-film transistors and complementary inverter through electrohydrodynamic jet printing. Nanomaterials, 2020, 10: 1304

    Article  CAS  Google Scholar 

  153. Kim DW, Min SY, Lee Y, et al. Transparent flexible nanoline field-effect transistor array with high integration in a large area. ACS Nano, 2020, 14: 907–918

    Article  CAS  Google Scholar 

  154. Min SY, Kim TS, Kim BJ, et al. Large-scale organic nanowire lithography and electronics. Nat Commun, 2013, 4: 1773

    Article  CAS  Google Scholar 

  155. Zhou K, Dai K, Liu C, et al. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat, 2020, 1: e1010

    Article  Google Scholar 

  156. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 2017, 11: 9614–9635

    Article  CAS  Google Scholar 

  157. Yang H, Qi D, Liu Z, et al. Soft thermal sensor with mechanical adaptability. Adv Mater, 2016, 28: 9175–9181

    Article  CAS  Google Scholar 

  158. Park YG, Lee S, Park JU. Recent progress in wireless sensors for wearable electronics. Sensors, 2019, 19: 4353

    Article  Google Scholar 

  159. Sanderson K. Electronic skin: From flexibility to a sense of touch. Nature, 2021, 591: 685–687

    Article  CAS  Google Scholar 

  160. Han Y, Dong J. Electrohydrodynamic (EHD) printing of molten metal ink for flexible and stretchable conductor with self-healing capability. Adv Mater Technol, 2017, 3: 1700268

    Article  CAS  Google Scholar 

  161. Hu X, Jiang Y, Ma Z, et al. Highly sensitive P(VDF-TrFE)/BTO nanofiber-based pressure sensor with dense stress concentration microstructures. ACS Appl Polym Mater, 2020, 2: 4399–4404

    Article  CAS  Google Scholar 

  162. Ali S, Bae J, Lee CH, et al. Flexible and passive photo sensor based on perylene/graphene composite. Sens Actuat B-Chem, 2015, 220: 634–640

    Article  CAS  Google Scholar 

  163. Nothnagle C, Baptist JR, Sanford J, et al. EHD printing of PEDOT: PSS inks for fabricating pressure and strain sensor arrays on flexible substrates. In: Popa D, Wijesundara MBJ, Blowers M (eds.). Proceedings of SPIE—The International Society for Optical Engineering, Baltimore, USA, 2015, 9494: 949403

  164. Koo JH, Kim DC, Shim HJ, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv Funct Mater, 2018, 28: 1801834

    Article  CAS  Google Scholar 

  165. Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv Mater, 2018, 30: 1706768

    Article  CAS  Google Scholar 

  166. Hanna AN, Kutbee AT, Subedi RC, et al. Flexible displays: Wavy architecture thin-film transistor for ultrahigh resolution flexible displays. Small, 2018, 14: 1870002

    Article  CAS  Google Scholar 

  167. Choi MK, Yang J, Hyeon T, et al. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex Electron, 2018, 2: 10

    Article  Google Scholar 

  168. Lee HE, Shin JH, Park JH, et al. Micro light-emitting diodes for display and flexible biomedical applications. Adv Funct Mater, 2019, 29: 1808075

    Article  CAS  Google Scholar 

  169. Kim J, Shim HJ, Yang J, et al. Ultrathin quantum dot display integrated with wearable electronics. Adv Mater, 2017, 29: 1700217

    Article  CAS  Google Scholar 

  170. Choi MK, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun, 2015, 6: 7149

    Article  CAS  Google Scholar 

  171. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano, 2017, 11: 5992–6003

    Article  CAS  Google Scholar 

  172. Kim K, Kim G, Lee BR, et al. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale, 2015, 7: 13410–13415

    Article  CAS  Google Scholar 

  173. Altintas Y, Torun I, Yazici AF, et al. Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem Eng J, 2020, 380: 122493

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2018YFA0703200), the National Natural Science Foundation of China (51973154), and the Natural Science Foundation of Tianjin (20JCZDJC00680).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang H proposed the topic and outline of the manuscript. Zheng X and Yang H wrote and revised the manuscript. Hu M, Liu Y, and Zhang J summarized the references, and contributed to the manuscript writing. Li X polished this manuscript. Li X and Yang H offered creative proposal for improving the depth of the review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Ximing Li  (李曦铭) or Hui Yang  (杨辉).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xinran Zheng received her Bachelor’s degree from the University of Jinan. Now, she is pursuing a Master’s degree at Tianjin University. She is doing her research under the guidance of Prof. Hui Yang. Her current research mainly focuses on the preparation and design of flexible electrodes for the dynamic monitoring of human electrophysiological signals.

Ximing Li is now a professor at the Department of Cardiology, Chest hospital, Tianjin University. He received his PhD degree from Tianjin Medical University in 2006. His research interests focus on flexible electronics for the clinical application of human electrocardiogram monitoring.

Hui Yang is a professor at the Department of Chemistry, School of Science, Tianjin University. He received his PhD degree from Shandong University in 2012. He subsequently joined Prof. Xi Zhang’s group as a postdoctoral fellow at the Department of Chemistry, Tsinghua University. In 2014–2018, he was a research fellow under the supervision of Prof. Xiaodong Chen at the School of Materials Science and Engineering, Nanyang Technological University. His research interests focus on flexible and stretchable electronics by various flexible micro/nano fabrication technology for stable human electrophysiological signal sensing and intelligent e-healthcare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hu, M., Liu, Y. et al. High-resolution flexible electronic devices by electrohydrodynamic jet printing: From materials toward applications. Sci. China Mater. 65, 2089–2109 (2022). https://doi.org/10.1007/s40843-021-1988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1988-8

Keywords

Navigation