Skip to main content
Log in

Engineering semicoherent interface with O–Fe–Se coordination for boosting the capacity and rate capability of a battery-type supercapacitor anode

具有O–Fe–Se配位键的半共格异质界面工程提高电池型超级电容器阳极的容量和倍率

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The low capacity and rate capability of the battery-type supercapacitor anode prevent its widespread application. In this paper, we construct a semicoherent heterojunction of Fe2O3/FeSe2 as an advanced battery-type supercapacitor anode to overcome the bottleneck. A series of characterization and first-principles calculations confirm that the special heterointerface manipulation automatically generates a stronger inherent electric field, thereby enhancing the electron transport rate and the OH adsorption capacity. In addition, it facilitates additional redox reactions between the active materials and OH and makes the reaction system easier to execute. Taking advantage of these benefits, the prepared anode has a high specific capacity of 199.2 mA h g−1 (1 A g−1) and retains 90.2% of its initial capacity after 5000 cycles at 105.8 mA h g−1 (10 A g−1). In addition, an asymmetric supercapacitor device is fabricated with the prepared Fe2O3/FeSe2 as the anode, which provides a maximum energy density of 52.55 W h kg−1 at 0.8 kW kg−1 and a capacity retention of 91.2% even after 15,000 cycles. In our work, a novel strategy for the optimal design of a battery-type supercapacitor anode with a large capacity and superior rate capability is conceived, significantly advancing the widespread application of transition metal compounds in energy storage systems.

摘要

低容量和低倍率限制了电池型超级电容阳极材料的大规模应用.本文通过构建一种具有半共格异质界面特性的Fe2O3/FeSe 2 纳米结构作为先进的阳极材料来解决这一瓶颈. 系列表征和第一性原理计算表明,这种特殊的异质界面不仅能自发产生较强的内建电场, 从而提高电子传递速率和OH离子的吸附能力; 还可使得活性物质与OH之间发生更多的氧化还原反应, 并且使该反应体系更容易进行. 基于上述优势,所制备出的阳极材料的最大比容量为199.2 mA h g−1(1 A g−1), 并且在10 A g−1下仍能保持105.8 mA h g−1, 同时, 经历5000次循环后, 其比容量可维持初始值的90.2%. 此外, 以Fe2O3/FeSe2作为阳极组装的非对称超级电容器在0.8 kW kg−1时的能量密度为52.55 W h kg−1, 即使经历15,000次循环, 该器件还能维持初始容量的91.2%. 我们的工作为设计大容量和高倍率性能的电池型超级电容器阳极材料提供了一种创新性的策略, 有望推动过渡金属化合物在储能系统中的大规模应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheberla D, Bachman JC, Elias JS, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16: 220–224

    Article  CAS  Google Scholar 

  2. Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev, 2018, 118: 9233–9280

    Article  CAS  Google Scholar 

  3. Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices. Adv Mater, 2017, 29: 1605336

    Article  Google Scholar 

  4. Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nat Energy, 2016, 1: 16070

    Article  CAS  Google Scholar 

  5. Urbain F, Smirnov V, Becker JP, et al. Multifunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. Energy Environ Sci, 2016, 9: 145–154

    Article  CAS  Google Scholar 

  6. Sun H, Mei L, Liang J, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356: 599–604

    Article  CAS  Google Scholar 

  7. Li S, Sharma N, Yu C, et al. Operando tailoring of defects and strains in corrugated β-Ni(OH)2 nanosheets for stable and high-rate energy storage. Adv Mater, 2021, 33: 2006147

    Article  CAS  Google Scholar 

  8. Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61: 159–184

    Article  CAS  Google Scholar 

  9. Wechsler SC, Amir FZ. Superior electrochemical performance of pristine nickel hexaaminobenzene MOF supercapacitors fabricated by electrophoretic deposition. ChemSusChem, 2020, 13: 1491–1495

    Article  CAS  Google Scholar 

  10. Du R, Wu Y, Yang Y, et al. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv Energy Mater, 2021, 11: 2100154

    Article  CAS  Google Scholar 

  11. Yang B, Li B, Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Res, 2023, 16: 1338–1361

    Article  CAS  Google Scholar 

  12. Yang W, Shi X, Li Y, et al. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. J Energy Storage, 2019, 26: 101018

    Article  Google Scholar 

  13. Nagaraju G, Sekhar SC, Yu JS. Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: An effective approach to electronic-waste management. Adv Energy Mater, 2018, 8: 1702201

    Article  Google Scholar 

  14. Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater, 2018, 13: 96–102

    Article  Google Scholar 

  15. Zuo X, Chang K, Zhao J, et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A, 2016, 4: 51–58

    Article  CAS  Google Scholar 

  16. Zan G, Wu T, Hu P, et al. An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Mater, 2020, 28: 82–90

    Article  Google Scholar 

  17. Zheng Z, Zao Y, Zhang Q, et al. Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chem Eng J, 2018, 347: 563–573

    Article  CAS  Google Scholar 

  18. Ge P, Hou H, Li S, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater, 2018, 28: 1801765

    Article  Google Scholar 

  19. Deng Y, Liu Z, Wang A, et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy, 2019, 62: 338–347

    Article  CAS  Google Scholar 

  20. Zhao J, Li Z, Yuan X, et al. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as freestanding advanced electrodes. Adv Energy Mater, 2018, 8: 1702787

    Article  Google Scholar 

  21. Pan Q, Zhang M, Zhang L, et al. FeSe2@C microrods as a superior longlife and high-rate anode for sodium ion batteries. ACS Nano, 2020, 14: 17683–17692

    Article  CAS  Google Scholar 

  22. Tang X, Jia R, Zhai T, et al. Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces, 2015, 7: 27518–27525

    Article  CAS  Google Scholar 

  23. Dai S, Bai Y, Shen W, et al. Core-shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J Power Sources, 2021, 482: 228915

    Article  CAS  Google Scholar 

  24. Xia H, Hong C, Li B, et al. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Funct Mater, 2015, 25: 627–635

    Article  CAS  Google Scholar 

  25. Ge J, Wang B, Wang J, et al. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv Energy Mater, 2020, 10: 1903277

    Article  CAS  Google Scholar 

  26. Li S, Zang W, Liu X, et al. Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chem Eng J, 2019, 359: 1419–1426

    Article  CAS  Google Scholar 

  27. Lin Y, Sun K, Liu S, et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv Energy Mater, 2019, 9: 1901213

    Article  Google Scholar 

  28. Wang X, Liu Y, Li H, et al. Regulating the self-discharge of flexible all-solid-state supercapacitors by a heterogeneous polymer electrolyte. Small, 2021, 17: 2102054

    Article  CAS  Google Scholar 

  29. Shen J, Wu J, Pei L, et al. CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv Energy Mater, 2016, 6: 1600341

    Article  Google Scholar 

  30. Chen L, Huang J, Zeng R, et al. Regulating voltage window and energy density of aqueous asymmetric supercapacitors by pinecone-like hollow Fe2O3/MnO2 nano-heterostructure. Adv Mater Interfaces, 2020, 7: 1901729

    Article  CAS  Google Scholar 

  31. Pesci FM, Sokolikova MS, Grotta C, et al. MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal, 2017, 7: 4990–4998

    Article  CAS  Google Scholar 

  32. Yao K, Xu Z, Ma M, et al. Densified metallic MoS2/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities. Adv Funct Mater, 2020, 30: 2004244

    Article  CAS  Google Scholar 

  33. Shan H, Qin J, Ding Y, et al. Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv Mater, 2021, 33: 2102471

    Article  CAS  Google Scholar 

  34. Huang H, Zhao J, Du Y, et al. Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano, 2020, 14: 16689–16697

    Article  CAS  Google Scholar 

  35. Lu X, Zeng Y, Yu M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater, 2014, 26: 3148–3155

    Article  CAS  Google Scholar 

  36. An C, Yuan Y, Zhang B, et al. Graphene wrapped FeSe2 nano-micro-spheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv Energy Mater, 2019, 9: 1900356

    Article  Google Scholar 

  37. Shi W, Zhang X, Che G, et al. Controlled hydrothermal synthesis and magnetic properties of three-dimensional FeSe2 rod clusters and microspheres. Chem Eng J, 2013, 215–216: 508–516

    Article  Google Scholar 

  38. Peng Q, Zhao H, Qian L, et al. Design of a neutral photo-electro-Fenton system with 3D-ordered macroporous Fe2O3/carbon aerogel cathode: High activity and low energy consumption. Appl Catal B-Environ, 2015, 174–175: 157–166

    Article  Google Scholar 

  39. Wang H, Wang X, Li Q, et al. Constructing three-dimensional porous carbon framework embedded with FeSe2 nanoparticles as an anode material for rechargeable batteries. ACS Appl Mater Interfaces, 2018, 10: 38862–38871

    Article  CAS  Google Scholar 

  40. Bhattacharya P, Kota M, Suh DH, et al. Biomimetic spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes. Adv Energy Mater, 2017, 7: 1700331

    Article  Google Scholar 

  41. Li Y, Xu J, Feng T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv Funct Mater, 2017, 27: 1606728

    Article  Google Scholar 

  42. Tang Q, Wang W, Wang G. The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J Mater Chem A, 2015, 3: 6662–6670

    Article  CAS  Google Scholar 

  43. Liu WW, Feng YQ, Yan XB, et al. Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater, 2013, 23: 4111–4122

    Article  CAS  Google Scholar 

  44. Han Y, Sun C, Gao K, et al. Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage. Electrochim Acta, 2022, 408: 139931

    Article  CAS  Google Scholar 

  45. Tan C, Luo Z, Chaturvedi A, et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater, 2018, 30: 1705509

    Article  Google Scholar 

  46. Brezesinski T, Wang J, Tolbert SH, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater, 2010, 9: 146–151

    Article  CAS  Google Scholar 

  47. Meng A, Yuan X, Shen T, et al. One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. J Mater Chem A, 2019, 7: 17613–17625

    Article  CAS  Google Scholar 

  48. Zhao X, Sajjad M, Zheng Y, et al. Covalent organic framework templated ordered nanoporous C60 as stable energy efficient supercapacitor electrode material. Carbon, 2021, 182: 144–154

    Article  CAS  Google Scholar 

  49. Hussain I, Mohapatra D, Dhakal G, et al. Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications J Energy Storage, 2020, 32: 101767

    Article  Google Scholar 

  50. Li Y, An F, Wu H, et al. A NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. J Power Sources, 2019, 427: 138–144

    Article  CAS  Google Scholar 

  51. Vamsi Krishna BN, Khaja Hussain S, Yu JS. Three-dimensional flowerlike nickel doped cobalt phosphate hydrate microarchitectures for asymmetric supercapacitors. J Colloid Interface Sci, 2021, 592: 145–155

    Article  CAS  Google Scholar 

  52. Asaithambi S, Sakthivel P, Karuppaiah M, et al. Preparation of FeSnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. J Energy Storage, 2021, 36: 102402

    Article  Google Scholar 

  53. Zhang M, Li Y, Shen Z. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes. J Power Sources, 2019, 414: 479–485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52072196, 52002199, 52002200, and 52102106), the Major Basic Research Program of Natural Science Foundation of Shandong Province (ZR2020ZD09), the Natural Science Foundation of Shandong Province (ZR2019BEM042 and ZR2020QE063), the Innovation and Technology Program of Shandong Province (2020KJA004), Taishan Scholars Program of Shandong Province (ts201511034), and the Postdoctoral Innovation Project of Shandong Province (202101020).

Author information

Authors and Affiliations

Authors

Contributions

Song J conducted the experiment and analyzed the experimental data. Liu T and He Y analyzed part of the experimental data. Wang Y, Zhang Y and Yuan X performed the characterizations. Meng A, Wang L and Li G performed some data analysis and offered helpful suggestion. Zhao J and Li Z designed the project and the experiments. Song J wrote the paper with support from Zhao J and Li Z. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Jian Zhao  (赵健) or Zhenjiang Li  (李镇江).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Jiangnan Song is a Master’s candidate at the College of Electromechanical Engineering, Qingdao University of Science & Technology. His current research focuses on supercapacitor synthesis, characterization, and electrochemical performance.

Jian Zhao received his PhD degree from Qingdao University of Science & Technology in 2017. His research interests include the synthesis, characterization, electrochemical performances, and mechanism of supercapacitor electrode materials.

Zhenjiang Li is a professor at the College of Sino-German Science and Technology, Qingdao University of Science & Technology. He received his PhD degree in nanomaterials from the Northwestern Polytechnical University in 2003. His current research focuses on the synthesis and application of 1D nanomaterials with high performance for energy storage and conversion.

Electronic Supplementary Material

40843_2022_2330_MOESM1_ESM.pdf

Engineering semicoherent interface with O–Fe–Se coordination for boosting the capacity and rate capability of a battery-type supercapacitor anode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Liu, T., He, Y. et al. Engineering semicoherent interface with O–Fe–Se coordination for boosting the capacity and rate capability of a battery-type supercapacitor anode. Sci. China Mater. 66, 1767–1778 (2023). https://doi.org/10.1007/s40843-022-2330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2330-6

Keywords

Navigation