Skip to main content
Log in

Hierarchical FexBi2−xS3 solid solutions for boosted supercapacitor performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For the pursuit of high energy supercapacitors, the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor (EDLC) type materials. Herein, a porous and defect-rich FexBi2−xS3 solid solution structure is firstly constructed by employing Fe-doped Bi2O2CO3 porous nanosheets as a precursor, which presents dramatically increased energy storage performance than Bi2S3 and FeS2 phase. For the optimized FexBi2−xS3 solid solution (FeBiS-60%), the Fe solute is free and random dispersed in Bi2S3 framework, which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II). Meanwhile, the FeBiS-60%, constructed by pore nanosheets that are assembled by self-supported basic nanorod units, presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance. Therefore, a high capacitance of 832.8 F·g−1 at a current density of 1 A·g−1 is achieved by the FeBiS-60% electrode. Furthermore, a fabricated Ni3S2@Co3S4 (NCS)//FeBiS-60% hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg−1 at the power density of 0.799 kW·kg−1, and ultra-long lifespan of remaining 86.7% initial capacitance after 8700 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jha, D.; Karkaria, V. N.; Karandikar, P. B.; Desai, R. S. Statistical modeling of hybrid supercapacitor. J. Energy Storage 2022, 46, 103869.

    Article  Google Scholar 

  2. Li, B.; Pang, H.; Xue, H. G. Fe-based phosphate nanostructures for supercapacitors. Chin. Chem. Lett. 2021, 32, 885–889.

    Article  CAS  Google Scholar 

  3. Momeni, M. M.; Navandian, S.; Aydisheh, H. M.; Lee, B. K. Photoassisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: A novel self-powered supercapacitor. J. Power Sources 2023, 557, 232588.

    Article  CAS  Google Scholar 

  4. Xue, Q.; Tian, Y.; Deng, S. Z.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Liu, F.; Zhi, C. Y. LaB6 nanowires for supercapacitors. Mater. Today Energy 2018, 10, 28–33.

    Article  Google Scholar 

  5. Wang, P.; Zhang, X. M.; Duan, W.; Teng, W.; Liu, Y. B.; Xie, Q. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 2021, 39, 1153–1158.

    Article  CAS  Google Scholar 

  6. Wang, H.; Zhao, P. F.; Zhang, X. M.; Zhang, S.; Lu, X. L.; Qiu, Z. P.; Ren, K.; Xu, Z.; Yao, R. X.; Wei, T. et al. Holey graphene oxide-templated construction of nano nickel-based metal-organic framework for highly efficient asymmetric supercapacitor. Nano Res. 2022, 15, 9047–9056.

    Article  CAS  Google Scholar 

  7. Li, Q. Q.; Liu, M. J.; Huang, F. Z.; Zuo, X. Q.; Wei, X.; Li, S. K.; Zhang, H. Co9S8@MnO2 core–shell defective heterostructure for High-voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem. Eng. J. 2022, 437, 135494.

    Article  CAS  Google Scholar 

  8. Wang, Y. M.; Wu, X. L.; Han, Y. Q.; Li, T. X. Flexible supercapacitor: Overview and outlooks. J. Energy Storage 2021, 42, 103053.

    Article  Google Scholar 

  9. Liu, T.; Yan, R. Y.; Huang, H. J.; Pan, L.; Cao, X. B.; DeMello, A.; Niederberger, M. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 2020, 30, 2004410.

    Article  CAS  Google Scholar 

  10. Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

    Article  CAS  Google Scholar 

  11. Wang, X. S.; Jiang, D. B.; Jing, C.; Liu, X. Y.; Li, K. L.; Yu, M.; Qi, S.; Zhang, Y. X. Biotemplate synthesis of Fe3O4/polyaniline for supercapacitor. J. Energy Storage 2020, 30, 101554.

    Article  Google Scholar 

  12. Yuan, X. H.; Chen, B. W.; Wu, X. W.; Mo, J.; Liu, Z. C.; Hu, Z. Y.; Liu, Z. H.; Zhou, C. J.; Yang, H. J.; Wu, Y. P. An aqueous asymmetric supercapacitor based on activated carbon and tungsten trioxide nanowire electrodes. Chin. J. Chem. 2017, 35, 61–66.

    Article  CAS  Google Scholar 

  13. Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 2021, 14, 3886–3892.

    Article  CAS  Google Scholar 

  14. Liu, S.; Xie, X.; Yang, L. Y. Analysis, modeling and implementation of a switching Bi-directional buck-boost converter based on electric vehicle hybrid energy storage for V2G system. IEEE Access 2020, 8, 65868–65879.

    Article  Google Scholar 

  15. Levi, M. D.; Daikhin, L.; Aurbach, D.; Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A minireview. Electrochem. Commun. 2016, 67, 16–21.

    Article  CAS  Google Scholar 

  16. Bu, R. R.; Deng, Y.; Wang, Y. L.; Zhao, Y.; Shi, Q. Q.; Zhang, Q.; Xiao, Z. Y.; Li, Y. Y.; Sun, W.; Wang, L. Bucket effect: A metal-organic framework derived high-performance FeS2/Fe2O3@S-rGO negative material for enhanced overall supercapacitor capacitance. ACS Appl. Energy Mater. 2021, 4, 11004–11013.

    Article  CAS  Google Scholar 

  17. Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

    Article  CAS  PubMed  Google Scholar 

  18. Lv, J. L.; Liang, T. X.; Yang, M.; Ken, S.; Hideo, M. Performance comparison of NiCo2O4 and NiCo2S4 formed on Ni foam for supercapacitor. Compos. Part B: Eng. 2017, 123, 28–33.

    Article  CAS  Google Scholar 

  19. Naveenkumar, P.; Paruthimal Kalaignan, G. Fabrication of core–shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications. Compos. Part B: Eng. 2019, 173, 106864.

    Article  CAS  Google Scholar 

  20. Chen, Y. X.; Jing, C.; Fu, X.; Shen, M.; Li, K. L.; Liu, X. Y.; Yao, H. C.; Zhang, Y. X.; Yao, K. X. Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chem. Eng. J. 2020, 384, 123367.

    Article  CAS  Google Scholar 

  21. Li, J.; Wei, M.; Chu, W.; Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 2017, 316, 277–287.

    Article  CAS  Google Scholar 

  22. Zhao, Y. H.; He, X. Y.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Li, J. Q.; Zhang, H. S.; Dong, H. X.; Zhang, M. L. et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core–shell heterostructures. Chem. Eng. J. 2018, 352, 29–38.

    Article  CAS  Google Scholar 

  23. Han, X. Y.; Li, J. E.; Lu, J. L.; Luo, S.; Wan, J.; Li, B. X.; Hu, C. G.; Cheng, X. L. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 2021, 86, 106079.

    Article  CAS  Google Scholar 

  24. Guo, H.; Liu, Z.; Li, H. Y.; Wu, H.; Zhang, C. J.; Yang, J. L.; Chen, X. H. Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Appl. Phys. A 2017, 123, 467.

    Article  Google Scholar 

  25. Chen, Z. D.; Liu, K.; Liu, S.; Xia, L.; Fu, J. J.; Zhang, X. M.; Zhang, C. C.; Gao, B. Porous Active carbon layer modified graphene for high-performance supercapacitor. Electrochim. Acta 2017, 237, 102–108.

    Article  CAS  Google Scholar 

  26. Lv, X. R.; Chen, L.; Min, X. Q.; Lin, X. Y.; Ni, Y. N. Flower-like MnNi2O4-MnNi2S4 core@shell composite electrode as battery-type supercapacitors. J. Energy Storage 2022, 55, 105792.

    Article  Google Scholar 

  27. Zhou, J.; Dai, S. M.; Li, Y. N.; Han, F. F.; Yuan, Y.; Tang, J.; Tang, W. H. Earth- abundant nanotubes with layered assembly for battery-type supercapacitors. Chem. Eng. J. 2018, 350, 835–843.

    Article  CAS  Google Scholar 

  28. Yin, B. Y.; Hao, L.; Wei, T.; Wang, C.; Zhu, B.; Li, X. G.; Yang, Q. G. Revealing bulk reaction kinetics of battery-like electrode for pseudocapacitor with ultra-high rate performance. Chem. Eng. J. 2022, 450, 138224.

    Article  CAS  Google Scholar 

  29. Johnson William, J.; Manohara Babu, I.; Muralidharan, G. Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chem. Eng. J. 2021, 422, 130058.

    Article  CAS  Google Scholar 

  30. Xu, Z. Y.; Du, C. C.; Yang, H. K.; Huang, J. L.; Zhang, X. H.; Chen, J. H. NiCoP@CoS tree-like core–shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors. Chem. Eng. J. 2021, 421, 127871.

    Article  CAS  Google Scholar 

  31. Kim, M.; Wang, C. H.; Earnshaw, J.; Park, T.; Amiralian, N.; Ashok, A.; Na, J. B.; Han, M. S.; Rowan, A. E.; Li, J. S. et al. Correction: Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. J. Mater. Chem. A 2023, 11, 1511.

    Article  CAS  Google Scholar 

  32. Xiao, T.; Chen, F.; Zhou, W. J.; Che, P. C.; Wang, S. L.; Chen, X. L.; Tan, X. Y.; Xiang, P.; Jiang, L. H.; Chen, X. B. Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chem. Eng. J. 2019, 378, 122162.

    Article  CAS  Google Scholar 

  33. Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Ali, M.; Seo, Y. S.; Song, W.; An, K. S.; Kim, H. S.; Chun, S. H. et al. MoS2@X2C (X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 2021, 421, 127843.

    Article  CAS  Google Scholar 

  34. Mane, S. A.; Kashale, A. A.; Kamble, G. P.; Kolekar, S. S.; Dhas, S. D.; Patil, M. D.; Moholkar, A. V.; Sathe, B. R.; Ghule, A. V. Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J. Alloys Compd. 2022, 926, 166722.

    Article  CAS  Google Scholar 

  35. Sridhar, V.; Park, H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J. Alloys Compd. 2018, 732, 799–805.

    Article  CAS  Google Scholar 

  36. Zhang, J. W.; Zhu, L. B.; Jia, H. T.; Wei, K. X.; Wen, L. X. Microreactor facilitated preparation and Ni-doping of MnO2 nanoparticles for supercapacitors. J. Alloys Compd. 2021, 889, 161772.

    Article  Google Scholar 

  37. Yang, J. J.; Russell, J. C.; Tao, S. S.; Lessio, M.; Wang, F. F.; Hartnett, A. C.; Peurifoy, S. R.; Doud, E. A.; O’Brien, E. S.; Gadjieva, N. et al. Superatomic solid solutions. Nat. Chem. 2021, 13, 607–613.

    Article  CAS  PubMed  Google Scholar 

  38. Denis, D. K.; Sun, X.; Zhang, J. Y.; Wang, Y. Y.; Hou, L. R.; Li, J.; Yuan, C. Z. Solid solution engineering of Co-Ni-based ternary molybdate nanorods toward hybrid supercapacitors and lithium-ion batteries as high-performance electrodes. ACS Appl. Energy Mater. 2020, 3, 3955–3965.

    Article  CAS  Google Scholar 

  39. Zhang, Q.; Shi, Q. Q.; Yang, Y.; Zang, Q.; Xiao, Z. Y.; Zhang, X. H.; Wang, L. 2D nanosheet/3D cubic framework Ni-Co sulfides for improved supercapacitor performance via structural engineering. Dalton Trans. 2020, 49, 8162–8168

    Article  CAS  PubMed  Google Scholar 

  40. Liu, C. Y.; Wang, L.; Xia, Z. P.; Chen, R. X.; Wang, H. L.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099.

    Article  CAS  Google Scholar 

  41. Chen, W. M.; Wang, X.; Feizbakhshan, M.; Liu, C. Z.; Hong, S.; Yang, P.; Zhou, X. Y. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 540, 524–534.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Q.; Hong, X. D.; Zhang, X.; Wang, W.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 356, 985–993.

    Article  CAS  Google Scholar 

  43. Zhu, Y. C.; Ye, X. K.; Jiang, H. D.; Xia, J. X.; Yue, Z. Y.; Wang, L. H.; Wan, Z. Q.; Jia, C. Y.; Yao, X. J. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power Sources 2020, 453, 227851.

    Article  CAS  Google Scholar 

  44. Nguyen, N. T.; Ozkan, S.; Hwang, I.; Zhou, X. M.; Schmuki, P. Spaced TiO2 nanotube arrays allow for a high performance hierarchical supercapacitor structure. J. Mater. Chem. A 2017, 5, 1895–1901.

    Article  CAS  Google Scholar 

  45. Cheng, Z. J.; Ren, Z. Y.; Ye, W. T.; Li, G.; Huang, X. H.; Lin, Y. Q.; Xiong, F. B.; Zhang, H. Y. Synthesis of hierarchically structured MnMoO4·H2O/Ni3S2 nanocomposites on Ni foam for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 56, 105941.

    Article  Google Scholar 

  46. Zhou, Y.; Cheng, X. Y.; Huang, F.; Sha, Z.; Han, Z. J.; Chen, J. Y.; Yang, W. M.; Yu, Y. Y.; Zhang, J.; Peng, S. H. et al. Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon 2021, 172, 272–282.

    Article  CAS  Google Scholar 

  47. Pinto, D.; Anasori, B.; Avireddy, H.; Shuck, C. E.; Hantanasirisakul, K.; Deysher, G.; Morante, J. R.; Porzio, W.; Alshareef, H. N.; Gogotsi, Y. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J. Mater. Chem. A 2020, 8, 8957–8968.

    Article  CAS  Google Scholar 

  48. Chen, X.; Tao, H. J.; Jiang, Y. H.; Li, S. S.; Liu, Y. X.; Xie, K.; Wang, Y. Q. P- doped S vacancy-rich NiCo2S4 hollow microspheres for high-performance supercapacitors. J. Energy Storage 2023, 68, 107721.

    Article  Google Scholar 

  49. Wang, Q. F.; Qu, Z. T.; Chen, S. H.; Zhang, D. H. Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 624, 385–393.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, R. Q.; Xu, S. S.; Shao, X. X.; Wen, Y.; Shi, X. R.; Huang, L. P.; Hong, M.; Hu, J.; Yang, Z. Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 47717–47727.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, S. M.; Wang, X. H.; Li, Y.; Zhang, Y. X.; Hu, Q.; Hua, X. H.; Liu, G.; Xie, E. Q.; Zhang, Z. X. Moderate oxygen-deficient Fe(III) oxide nanoplates for high performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 565, 458–464.

    Article  CAS  PubMed  Google Scholar 

  52. Ismail, K. B. M.; Kumar, M. A.; Jayavel, R.; Arivanandhan, M.; Ismail, M. A. M. Enhanced electrochemical performance of the MoS2/Bi2S3 nanocomposite- based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC Adv. 2023, 13, 24272–24285.

    Article  Google Scholar 

  53. Kumar, D. R.; Nguyen, T. T.; Lamiel, C.; Shim, J. J. Layered 2-D Bi2Se3 nanosheets intercalated by Ni(OH)2 and their supercapacitor performance. Mater. Lett. 2016, 165, 257–262.

    Article  CAS  Google Scholar 

  54. Liu, L.; Yan, Y.; Cai, Z. H.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.

    Article  Google Scholar 

  55. Qiu, Y. F.; Fan, H. B.; Chang, X. Y.; Dang, H. F.; Luo, Q.; Cheng, Z. Y. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl. Surf. Sci. 2018, 434, 16–20.

    Article  CAS  Google Scholar 

  56. Zhao, C. J.; Shao, X. X.; Zhu, Z. Q.; Zhao, C. H.; Qian, X. Z. One-pot hydrothermal synthesis of RGO/FeS composite on Fe foil for high performance supercapacitors. Electrochim. Acta 2017, 246, 497–506.

    Article  CAS  Google Scholar 

  57. Xie, J. J.; Ma, R.; Fang, H. B.; Shi, H. R.; Liu, D. X. MIL-101(Fe)-attached graphene oxide for high-performance supercapacitors with sound stability in acid electrolyte. Cryst. Growth Des. 2022, 22, 2997–3006.

    Article  CAS  Google Scholar 

  58. Gao, Q.; Wang, J. X.; Ke, B.; Wang, J. F.; Li, Y. Q. Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes. Ceram. Int. 2018, 44, 18770–18775.

    Article  CAS  Google Scholar 

  59. Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta, B. K.; Kahol, P. Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J. Chem. 2014, 38, 4344–4350.

    Article  CAS  Google Scholar 

  60. Iqbal, M. Z.; Amjad, N.; Siddique, S.; Ali, R.; Aziz, U.; Aftab, S.; Alzaid, M. Exploring the synergy of binder free MoWS2@Ag as electrode materials for hybrid supercapacitors. J. Energy Storage 2022, 56, 105925.

    Article  Google Scholar 

  61. Ali, M. S.; Layek, R.; Ali, M. S.; Tudu, S.; Dutta, K.; Gangopadhyay, B.; Karmakar, D.; Mallik, A.; Panda, S.; Maiti, A. et al. Ultrahigh energy density solid state supercapacitor based on metal halide perovskite nanocrystal electrodes: Real-life applications. J. Energy Storage 2023, 65, 107215.

    Article  Google Scholar 

  62. Li, C. Y.; Wang, X. K.; Ma, D. G.; Yan, Y.; Huo, P. W.; Yang, Q. J. Interlayer nano-dots induced high-rate supercapacitors. Adv. Sci. 2023, 10, 2301398.

    Article  CAS  Google Scholar 

  63. Chen, J. Y.; Nakate, U. T.; Nguyen, Q. T.; Park, S. Electrodeposited Bi(OH)3@Mo(OH)4 nanostructured electrode for high-performance supercapacitor application. Ceram. Int. 2022, 48, 22417–22425.

    Article  Google Scholar 

  64. Shao, X. X.; Zhu, Z. Q.; Zhao, C. J.; Zhao, C. H.; Qian, X. Z. Hierarchical FeS/RGO/FeS@Fe foil as high-performance negative electrode for asymmetric supercapacitors. Inorg. Chem. Front. 2018, 5, 1912–1922.

    Article  CAS  Google Scholar 

  65. Yang, S. J.; Qian, L. B.; Ping, Y. J.; Zhang, H. L.; Li, J. J.; Xiong, B. Y.; Fang, P. F.; He, C. Q. Electrochemical performance of Bi2O3 supercapacitors improved by surface vacancy defects. Ceram. Int. 2021, 47, 8290–8299.

    Article  CAS  Google Scholar 

  66. Khalafallah, D.; Zhi, M. J.; Hong, Z. L. Bi- Fe chalcogenides anchored carbon matrix and structured core-shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. J. Colloid Interface Sci. 2022, 606, 1352–1363.

    Article  CAS  PubMed  Google Scholar 

  67. Yan, W.; Zhang, Y.; Zeng, T.; Zhang, Y. Y.; Wan, Q. J.; Yang, N. J. A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide. J. Energy Storage 2022, 52, 104899.

    Article  Google Scholar 

  68. Vattikuti, S. V. P.; Zeng, J.; Shim, J.; Lee, D. S.; Devarayapalli, K. C. Facile synthesis of ultrathin Bi(OH)SO4H2O nanosheets and battery-like electrode for symmetric supercapacitors. J. Alloys Compd. 2023, 936, 168186.

    Article  CAS  Google Scholar 

  69. Zhu, P.; Xie, L. X.; Xiao, X. B.; Yang, H.; Jiang, J. L. Orthorhombic (Co,Fe)Se2/Ti2C MXene porous microspheres for high-performance supercapacitors. J. Alloys Compd. 2022, 924, 166586.

    Article  CAS  Google Scholar 

  70. Zhao, Y. X.; Feng, Z. H.; Guo, Z. C.; Mu, J. P.; Che, H. W.; Zhang, Z. X.; Tian, T.; Xiaoliang, Z.; Li, S. M.; Wang, Y. M. et al. Fe incorporated ternary layered double hydroxides with remarkably improved electrochemical performance towards asymmetric supercapacitors. Ceram. Int. 2022, 48, 27369–27378.

    Article  CAS  Google Scholar 

  71. Lu, W.; Yang, Y.; Zhang, T. Y.; Ma, L. K. X.; Luo, X. T.; Huang, C. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 2021, 590, 226–237.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Natural Science Foundation of China (Nos. 52272222 and 52072197), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), University Youth Innovation Team of Shandong Province (Nos. 2019KJC004 and 202201010318), the Natural Science Foundation of Shandong Province, China (No. ZR2021MB061), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Taishan Scholar Young Talent Program (No. tsqn201909114), and Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant (No. ZR2020ZD09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Xiao or Lei Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Wang, X., Jing, R. et al. Hierarchical FexBi2−xS3 solid solutions for boosted supercapacitor performance. Nano Res. 17, 3997–4005 (2024). https://doi.org/10.1007/s12274-023-6243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6243-4

Keywords

Navigation