Skip to main content
Log in

High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers

高质量的AlGaN外延结构和UVC垂直腔面发射激光 器的实现

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

AlGaN-based vertical-cavity surface-emitting lasers (VCSELs) have garnered recent interest due to their superior material properties and device benefits. Nevertheless, AlGaN-based VCSELs are extremely difficult to realize due to numerous technical limitations associated with both material epitaxial growth and chip fabrication. This study fabricated a high-quality AlGaN multiple quantum wells (MQWs) structure using epitaxial lateral overgrowth and analyzed it using X-ray diffraction (XRD) and photoluminescence (PL) measurements. With an edge dislocation density (DD) of 109 cm−2, XRD measurements reveal that the AlN template is nearly fully relaxed. The subsequent AlGaN/AlN superlattice (SL) layer is introduced to decrease the edge DD, and the edge DD in the MQWs is ∼108 cm−2. According to PL measurements, the internal quantum efficiency of the MQWs is as high as 62%, and radiative recombination dominated the emission of the MQWs at room temperature. Using these epitaxial wafers, ultraviolet radiation C (UVC) VCSELs were fabricated using various techniques, including laser lift-off (LLO) and chemical mechanical polishing (CMP). The crystallinity of the MQWs was unaffected by sapphire substrate removal using LLO. After removing the sapphire substrate using LLO and CMP, UVC surface-stimulated emission was observed in MQWs. AlGaN-based UVC VCSELs with lasing wavelengths of 275.91, 276.28, and 277.64 nm have been fabricated. The minimum threshold for UVC VCSELs is 0.79 MW cm−2, which is a record low.

摘要

AlGaN基垂直腔面发射激光器(VCSEL)因其优越的材料性质和 器件优点吸引了很多关注. 然而, 由于材料外延生长和器件制备工艺的 局限, AlGaN基VCSEL制备很困难. 本工作通过侧向外延生长技术制备 了高质量的AlGaN多量子阱(MQWs)结构的外延片, 并通过X射线衍射 (XRD)和光致发光(PL)实验对外延片进行了分析. XRD测量显示, 外延 片中的AlN模板层几乎是弛豫的, 刃位错密度为109 cm−2. 随后, 生长的 AlGaN/AlN超晶格(SL)层被用来减少刃位错密度, 使得量子阱中的位错 密度为108 cm−2. 根据PL测试结果, MQWs的内量子效率(IQE)为62%, 且在室温下的发光以辐射复合为主. 通过激光剥离(LLO)和化学机械抛 光(CMP)技术, 将这些外延片制备成UVC VCSEL. 经过这些工艺, MQWs的晶体质量没有受到影响, 还在抛光之后的表面观察到了UVC 波段的受激辐射. 这些AlGaN基UVC VCSEL在275.91, 276.28和 277.64 nm实现了激射, 最小激射阈值为0.79 MW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vurgaftman I, Meyer JR. Band parameters for nitrogen-containing semiconductors. J Appl Phys, 2003, 94: 3675–3696

    Article  CAS  Google Scholar 

  2. Zheng Z, Mei Y, Long H, et al. AlGaN-based deep ultraviolet vertical-cavity surface-emitting laser. IEEE Electron Device Lett, 2021, 42: 375–378

    Article  CAS  Google Scholar 

  3. Mei Y, Weng GE, Zhang BP, et al. Quantum dot vertical-cavity surface-emitting lasers covering the’ green gap’. Light Sci Appl, 2016, 6: e16199

    Article  Google Scholar 

  4. Lu TC, Kao CC, Kuo HC, et al. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl Phys Lett, 2008, 92: 141102

    Article  Google Scholar 

  5. Kuramoto M, Kobayashi S, Akagi T, et al. High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser. Appl Phys Express, 2018, 11: 112101

    Article  Google Scholar 

  6. Kuramoto M, Kobayashi S, Akagi T, et al. Watt-class blue vertical-cavity surface-emitting laser arrays. Appl Phys Express, 2019, 12: 091004

    Article  CAS  Google Scholar 

  7. Hjort F, Enslin J, Cobet M, et al. A 310 nm optically pumped AlGaN vertical-cavity surface-emitting laser. ACS Photonics, 2021, 8: 135–141

    Article  CAS  Google Scholar 

  8. Li D, Jiang K, Sun X, et al. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv Opt Photon, 2018, 10: 43–110

    Article  CAS  Google Scholar 

  9. Ban K, Yamamoto J, Takeda K, et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl Phys Express, 2011, 4: 052101

    Article  Google Scholar 

  10. Jain R, Sun W, Yang J, et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 2008, 93: 051113

    Article  Google Scholar 

  11. Wang HM, Zhang JP, Chen CQ, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81: 604–606

    Article  CAS  Google Scholar 

  12. Zhang JP, Wang HM, Gaevski ME, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80: 3542–3544

    Article  CAS  Google Scholar 

  13. Sun WH, Zhang JP, Yang JW, et al. Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering. Appl Phys Lett, 2005, 87: 211915

    Article  Google Scholar 

  14. Zheng Z, Li Y, Paul O, et al. Loss analysis in nitride deep ultraviolet planar cavity. J Nanophoton, 2018, 12: 1

    Article  CAS  Google Scholar 

  15. Zheng Z, Long H, Matta S, et al. Photoassisted chemical smoothing of AlGaN surface after laser lift-off. J Vac Sci Tech B, 2020, 38: 042207

    Article  CAS  Google Scholar 

  16. Moram MA, Vickers ME. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72: 036502

    Article  Google Scholar 

  17. Mártil I, Redondo E, Ojeda A. Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides. J Appl Phys, 1997, 81: 2442–2444

    Article  Google Scholar 

  18. Wang H, Ji Z, Qu S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt Express, 2012, 20: 3932–3940

    Article  CAS  Google Scholar 

  19. Xu RB, Xu H, Mei Y, et al. Emission dynamics of GaN-based blue resonant-cavity light-emitting diodes. J Lumin, 2019, 216: 116717

    Article  CAS  Google Scholar 

  20. Yasan A, McClintock R, Mayes K, et al. Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes. Appl Phys Lett, 2003, 83: 4083–4085

    Article  CAS  Google Scholar 

  21. Wang TY, Tasi CT, Lin CF, et al. 85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Sci Rep, 2017, 7: 14422

    Article  Google Scholar 

  22. Banal RG, Funato M, Kawakami Y. Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region. Appl Phys Lett, 2011, 99: 011902

    Article  Google Scholar 

  23. Bhattacharyya A, Moustakas TD, Zhou L, et al. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett, 2009, 94: 181907

    Article  Google Scholar 

  24. Shatalov M, Sun W, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5: 082101

    Article  Google Scholar 

  25. Dong P, Yan J, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395: 9–13

    Article  CAS  Google Scholar 

  26. Zeng J, Li W, Yan J, et al. Temperature-dependent emission shift and carrier dynamics in deep ultraviolet AlGaN/AlGaN quantum wells. Phys Status Solidi RRL, 2013, 7: 297–300

    Article  CAS  Google Scholar 

  27. Rodríguez-de Marcos LV, Larruquert JI, Méndez JA, et al. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt Mater Express, 2016, 6: 3622–3637

    Article  Google Scholar 

  28. Hakoe F, Tokoro H, Ohkoshi S. Dielectric and optical constants of X-Ti3O5 film measured by spectroscopic ellipsometry. Mater Lett, 2017, 188: 8–12

    Article  CAS  Google Scholar 

  29. Kruchinin VN, Perevalov TV, Atuchin VV, et al. Optical properties of TiO2 films deposited by reactive electron beam sputtering. J Elec Materi, 2017, 46: 6089–6095

    Article  CAS  Google Scholar 

  30. Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A, 1991, 43: 3161–3164

    Article  CAS  Google Scholar 

  31. Romano LT, Van de Walle CG, Ager III JW, et al. Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition. J Appl Phys, 2000, 87: 7745–7752

    Article  CAS  Google Scholar 

  32. Ambacher O, Majewski J, Miskys C, et al. Pyroelectric properties of Al (In)GaN/GaN hetero- and quantum well structures. J Phys-Condens Matter, 2002, 14: 3399–3434

    Article  CAS  Google Scholar 

  33. Dong L, Mantese JV, Avrutin V, et al. Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells. J Appl Phys, 2013, 114: 043715

    Article  Google Scholar 

  34. Li J, Li S, Kang J. Quantized level transitions and modification in InGaN/GaN multiple quantum wells. Appl Phys Lett, 2008, 92: 101929

    Article  Google Scholar 

  35. Dong L, Yadav SK, Ramprasad R, et al. Band gap tuning in GaN through equibiaxial in-plane strains. Appl Phys Lett, 2010, 96: 202106

    Article  Google Scholar 

  36. Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and AlN on patterned AlN/sapphire templates. J Cryst Growth, 2011, 315: 200–203

    Article  CAS  Google Scholar 

  37. Ni R, Chen X, Yan J, et al. Reducing stimulated emission threshold power density of AlGaN/AlN multiple quantum wells by nano-trench-patterned AlN template. J Alloys Compd, 2019, 777: 344–349

    Article  CAS  Google Scholar 

  38. Li X, Xie H, Ponce FA, et al. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells. Appl Phys Lett, 2015, 107: 241109

    Article  Google Scholar 

  39. Redwing JM, Loeber DAS, Anderson NG, et al. An optically pumped GaN-AlGaN vertical cavity surface emitting laser. Appl Phys Lett, 1996, 69: 1–3

    Article  CAS  Google Scholar 

  40. Cosendey G, Castiglia A, Rossbach G, et al. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl Phys Lett, 2012, 101: 151113

    Article  Google Scholar 

  41. Feltin E, Christmann G, Dorsaz J, et al. Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN vcsel structure. Electron Lett, 2007, 43: 924–926

    Article  CAS  Google Scholar 

  42. Chyi J-I, Fujioka H, Morkoç H, et al. Development for ultraviolet vertical cavity surface emitting lasers. In: Proceedings Volume 9748, Gallium Nitride Materials and Devices XI. San Francisco, 2016

  43. Liu YS, Saniul Haq AFM, Mehta K, et al. Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector. Appl Phys Express, 2016, 9: 111002

    Article  Google Scholar 

  44. Park YJ, Detchprohm T, Mehta K, et al. Optically pumped vertical-cavity surface-emitting lasers at 375 nm with air-gap/Al0.05Ga0.95N distributed Bragg reflectors In: Proceedings of SPIE, Vertical-Cavity Surface-Emitting Lasers XXIII San Francisco, 2019

  45. Shen C, Leonard J, Young E, et al. GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs. In: 2016 Conference on Lasers and Electro-Optics. San Jose, 2016

  46. Ikeyama K, Kozuka Y, Matsui K, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Appl Phys Express, 2016, 9: 102101

    Article  Google Scholar 

  47. Furuta T, Matsui K, Kozuka Y, et al. 1.7-mW nitride-based vertical-cavity surface-emitting lasers using AlInN/GaN bottom DBRs. In: 2016 International Semiconductor Laser Conference (ISLC). Kobe, 2016

  48. Matsui K, Kozuka Y, Ikeyama K, et al. Gan-based vertical cavity surface emitting lasers with periodic gain structures. Jpn J Appl Phys, 2016, 55: 05FJ08

    Article  Google Scholar 

  49. Furuta T, Matsui K, Horikawa K, et al. Room-temperature CW operation of a nitride-based vertical-cavity surface-emitting laser using thick GaInN quantum wells. Jpn J Appl Phys, 2016, 55: 05FJ11

    Article  Google Scholar 

  50. Chang TC, Kuo SY, Lian JT, et al. High-temperature operation of GaN-based vertical-cavity surface-emitting lasers. Appl Phys Express, 2017, 10: 112101

    Article  Google Scholar 

  51. Lu TC, Chen SW, Wu TT, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Appl Phys Lett, 2010, 97: 071114

    Article  Google Scholar 

  52. Faraon A, Zhou W, Koyama F, et al. Gan vertical-cavity surface-emitting laser with a high-contrast grating reflector. In: Proceedings Volume 10542, High Contrast Metastructures VII. San Francisco, 2018

  53. Higuchi Y, Omae K, Matsumura H, et al. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Appl Phys Express, 2008, 1: 121102

    Article  Google Scholar 

  54. Omae K, Higuchi Y, Nakagawa K, et al. Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate. Appl Phys Express, 2009, 2: 052101

    Article  Google Scholar 

  55. Terao K, Nagai H, Morita D, et al. Blue and green GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN DBR. In: Proceedings of SPIE 11686, Gallium Nitride Materials and Devices XVI. Online only, 2021

  56. Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl Phys Express, 2011, 4: 072103

    Article  Google Scholar 

  57. Chen R, Sun HD, Wang T, et al. Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Appl Phys Lett, 2010, 96: 241101

    Article  Google Scholar 

  58. Yeh PS, Chang CC, Chen YT, et al. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle. Appl Phys Lett, 2016, 109: 241103

    Article  Google Scholar 

  59. Park SH, Kim J, Jeon H, et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme. Appl Phys Lett, 2003, 83: 2121–2123

    Article  CAS  Google Scholar 

  60. Izumi S, Fuutagawa N, Hamaguchi T, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth. Appl Phys Express, 2015, 8: 062702

    Article  Google Scholar 

  61. Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth. Phys Status Solidi A, 2016, 213: 1170–1176

    Article  CAS  Google Scholar 

  62. Hamaguchi T, Hoshina Y, Hayashi K, et al. Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on {20–21} semi-polar GaN. Appl Phys Express, 2020, 13: 041002

    Article  CAS  Google Scholar 

  63. Kuramoto M, Kobayashi S, Akagi T, et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Appl Phys Lett, 2018, 112: 111104

    Article  Google Scholar 

  64. Someya T, Werner R, Forchel A, et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 1999, 285: 1905–1906

    Article  CAS  Google Scholar 

  65. Leonard JT, Cohen DA, Yonkee BP, et al. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl Phys Lett, 2015, 107: 011102

    Article  Google Scholar 

  66. Holder CO, Leonard JT, Farrell RM, et al. Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching. Appl Phys Lett, 2014, 105: 031111

    Article  Google Scholar 

  67. Leonard JT, Young EC, Yonkee BP, et al. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact. Appl Phys Lett, 2015, 107: 091105

    Article  Google Scholar 

  68. Leonard JT, Yonkee BP, Cohen DA, et al. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched airgap aperture. Appl Phys Lett, 2016, 108: 031111

    Article  Google Scholar 

  69. Holder C, Speck JS, DenBaars SP, et al. Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers. Appl Phys Express, 2012, 5: 092104

    Article  Google Scholar 

  70. Mei Y, Yang TR, Ou W, et al. Low-threshold wavelength-tunable ultraviolet vertical-cavity surface-emitting lasers from 376 to 409 nm. Fundamental Res, 2021, 1: 684–690

    Article  CAS  Google Scholar 

  71. Liu WJ, Hu XL, Ying LY, et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers. Appl Phys Lett, 2014, 104: 251116

    Article  Google Scholar 

  72. Weng G, Mei Y, Liu J, et al. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt Express, 2016, 24: 15546–15553

    Article  CAS  Google Scholar 

  73. Zhang JY, Cai LE, Zhang BP, et al. Blue-violet lasing of optically pumped GaN-based vertical cavity surface-emitting laser with dielectric distributed Bragg reflectors. J Lightwave Technol, 2009, 27: 55–59

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFE0131500) and the National Natural Science Foundation of China (62104204 and U21A20493).

Author information

Authors and Affiliations

Authors

Contributions

Zheng Z fabricated the devices, measured the devices and epilayers, and wrote the manuscript. Hoo J grew the epitaxial structures and helped to measure the epilayers. Zhang B proposed the outline of the manuscript and revised the manuscript. Guo S helped to revise the manuscript. All the authors contributed to the discussion of the work.

Corresponding authors

Correspondence to Shiping Guo  (郭世平) or Baoping Zhang  (张保平).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Zhongming Zheng is a postdoctoral researcher at Xiamen University. He earned his PhD degree from Xiamen University in 2021. His research focuses on III-nitride materials and devices.

Shiping Guo received his PhD degree in semiconductor physics and device physics from Shanghai Institute of Technical Physics, Chinese Academy of Sciences, in 1994. Currently, he serves as Group Vice President and General Manager of MOCVD Product Division at AMEC. His research interests include MOCVD hardware development, project management and epitaxial growth process development of III-N based materials and devices. Before AMEC, he worked at IQR RF LLC and EMCORE Corp. from 2001 to 2012 and at several research groups at the City University of New York, Tohoku University and Shanghai Institute of Technical Physics.

Baoping Zhang was born in Hebei, China, in 1963. He received the BS degree in physics from Lanzhou University, Lanzhou, China, in 1983, the ME degree in microelectronics from Hebei Semiconductor Research Institute, Shijiazhuang, China, and the Dr. Eng. degree in applied physics from the University of Tokyo, Tokyo, Japan, in 1994. He is currently a distinguished professor at the School of Electronic Science and Engineering, Xiamen University, China, where he is engaged in wide-gap semiconductor materials and devices, especially GaN-based light-emitting diodes (LEDs) and VCSELs.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Wang, Y., Hoo, J. et al. High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers. Sci. China Mater. 66, 1978–1988 (2023). https://doi.org/10.1007/s40843-022-2310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2310-5

Keywords

Navigation