Skip to main content
Log in

Large-area epitaxial growth of 2D ZrS2(1−x)Se2x semiconductor alloys with fully tunable compositions and bandgaps for optoelectronics

全组分/带隙可调的二维ZrS2(1−x)Se2x半导体合金的外 延生长及其光电应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Bandgap engineering of transition metal dichalcogenides (TMDs) is significant for broadening their applications in electronics and optoelectronics devices. Herein, we report the new epitaxial growth of large-area uniform ZrS{in2(1−{itx})}Se{in2x} alloy films with fully tunable composition on sapphire substrates {itvia} a facile single-step chemical vapor deposition method. The ZrS{in2(1−{itx})}Se{in2{itx}} alloys exhibit good single crystallinity and epitaxial quality, as well as uniform elemental distribution, and the epitaxial relationship with the substrate is determined to be ZrS{in2(1−{itx})}Se{in2{itx}} (0001)[10–10]∥sapphire (0001)[11–20]. The bandgap of ZrS{in2(1−{itx})}Se{in2{itx}} alloy exhibits a pronounced bowing behavior with continuously tunable bandgaps from 1.86 to 1.15 eV, depending on the Se composition. The ZrS{in2(1−{itx})}Se{in2{itx}}-based photodetectors demonstrate a sensitive photoresponse to visible light with a fast response time of ∼100 µs, and their performances are significantly improved as the Se composition decreases. This work provides an efficient way to synthesize ZrS{in2(1−{itx})}Se{in2{itx}} alloys with fully tunable bandgaps, providing great flexibility in designing TMD-based optoelectronic devices.

摘要

过渡金属硫化物(TMDs)的带隙工程对于拓宽其在电子和光电子 器件中的应用具有重要意义. 本文中, 我们首次报道了通过简单的一步 化学气相沉积法在蓝宝石衬底上外延生长大面积、全组分可调的 ZrS2(1−x)Se2x合金薄膜. ZrS2(1−x)Se2x合金表现出优异的单晶性和外延质 量, 以及均匀的元素分布, 其与衬底的外延关系被确定为ZrS2(1−x)Se2x (0001)[10-10]//蓝宝石(0001)[11-20]. ZrS2(1−x)Se2x合金的带隙随组分的 变化从1.86到1.15 eV连续可调, 且表现出明显的弯曲特性. 基于 ZrS2(1−x)Se2x的光电探测器对可见光具有灵敏的光响应, 响应时间约为 100 μs, 随着Se组分的减少, 探测器性能显著提高. 本工作为合成带隙 可调的ZrS2(1−x)Se2x合金提供了一种有效方法, 为设计基于TMDs的光电 器件提供了极大的灵活性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Li Y, Aljarb A, et al. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem Rev, 2018, 118: 6134–6150

    Article  CAS  Google Scholar 

  2. Wang X, Song Z, Wen W, et al. Potential 2D materials with phase transitions: Structure, synthesis, and device applications. Adv Mater, 2019, 31: 1804682

    Article  CAS  Google Scholar 

  3. Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359

    Article  CAS  Google Scholar 

  4. Wu M, Xiao Y, Zeng Y, et al. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat, 2021, 3: 362–396

    Article  CAS  Google Scholar 

  5. Lin YC, Torsi R, Geohegan DB, et al. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv Sci, 2021, 8: 2004249

    Article  CAS  Google Scholar 

  6. Yao J, Yang G. 2D layered material alloys: Synthesis and application in electronic and optoelectronic devices. Adv Sci, 2022, 9: 2103036

    Article  Google Scholar 

  7. Li H, Duan X, Wu X, et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc, 2014, 136: 3756–3759

    Article  CAS  Google Scholar 

  8. Feng Q, Zhu Y, Hong J, et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv Mater, 2014, 26: 2648–2653

    Article  CAS  Google Scholar 

  9. Lim YR, Han JK, Yoon Y, et al. Atomic-level customization of 4 in. transition metal dichalcogenide multilayer alloys for industrial applications. Adv Mater, 2019, 31: 1901405

    Article  Google Scholar 

  10. Fu Q, Yang L, Wang W, et al. Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap. Adv Mater, 2015, 27: 4732–4738

    Article  CAS  Google Scholar 

  11. Duan X, Wang C, Fan Z, et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett, 2016, 16: 264–269

    Article  CAS  Google Scholar 

  12. Sun H, Zhou X, Wang X, et al. p-n conversion of charge carrier types and high photoresponsive performance of composition modulated ternary alloy W(SxSe1−x)2 field-effect transistors. Nanoscale, 2020, 12: 15304–15317

    Article  CAS  Google Scholar 

  13. Apte A, Krishnamoorthy A, Hachtel JA, et al. Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys. Chem Mater, 2018, 30: 7262–7268

    Article  CAS  Google Scholar 

  14. Yu P, Lin J, Sun L, et al. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv Mater, 2017, 29: 1603991

    Article  Google Scholar 

  15. Song JG, Ryu GH, Lee SJ, et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun, 2015, 6: 7817

    Article  Google Scholar 

  16. Liu X, Wu J, Yu W, et al. Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: Bandgap engineering and field effect transistors. Adv Funct Mater, 2017, 27: 1606469

    Article  Google Scholar 

  17. Yu H, Yan H, Li H, et al. Spatially graded millimeter sized Mo1−xWxS2 monolayer alloys: Synthesis and memory effect. ACS Appl Mater Interfaces, 2021, 13: 44693–44702

    Article  CAS  Google Scholar 

  18. Kim J, Seung H, Kang D, et al. Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett, 2021, 21: 9153–9163

    Article  CAS  Google Scholar 

  19. Li X, Lin MW, Basile L, et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv Mater, 2016, 28: 8240–8247

    Article  CAS  Google Scholar 

  20. Cui F, Feng Q, Hong J, et al. Synthesis of large-size 1T′ ReS2xSe2(1−x) alloy monolayer with tunable bandgap and carrier type. Adv Mater, 2017, 29: 1705015

    Article  Google Scholar 

  21. Kang P, Nan H, Zhang X, et al. Controllable synthesis of crystalline ReS2(1−x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv Opt Mater, 2020, 8: 1901415

    Article  CAS  Google Scholar 

  22. Wang Z, Zhao X, Yang Y, et al. Phase-controlled synthesis of monolayer W1−xRexS2 alloy with improved photoresponse performance. Small, 2020, 16: 2000852

    Article  CAS  Google Scholar 

  23. An B, Ma Y, Chu F, et al. Growth of centimeter scale Nb1−xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Res, 2022, 15: 2608–2615

    Article  CAS  Google Scholar 

  24. Zuo Y, Liu C, Ding L, et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat Commun, 2022, 13: 1007

    Article  CAS  Google Scholar 

  25. Yan C, Gong C, Wangyang P, et al. 2D group IVB transition metal dichalcogenides. Adv Funct Mater, 2018, 28: 1803305

    Article  Google Scholar 

  26. Zhang W, Huang Z, Zhang W, et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res, 2014, 7: 1731–1737

    Article  CAS  Google Scholar 

  27. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    Article  CAS  Google Scholar 

  28. Oliver SM, Fox JJ, Hashemi A, et al. Phonons and excitons in ZrSe2-ZrS2 alloys. J Mater Chem C, 2020, 8: 5732–5743

    Article  CAS  Google Scholar 

  29. Fox JJ, Bachu S, Cavalero RL, et al. Chemical vapor transport synthesis, characterization and compositional tuning of ZrSxSe2−x for optoelectronic applications. J Cryst Growth, 2020, 542: 125609

    Article  CAS  Google Scholar 

  30. Moustafa M, Paulheim A, Mohamed M, et al. Angle-resolved photoemission studies of the valence bands of ZrSxSe2−x. Appl Surf Sci, 2016, 366: 397–403

    Article  CAS  Google Scholar 

  31. Wang D, Zhang X, Guo G, et al. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv Mater, 2018, 30: 1803285

    Article  Google Scholar 

  32. Tian Y, Zheng M, Cheng Y, et al. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application. J Mater Chem C, 2021, 9: 13954–13962

    Article  CAS  Google Scholar 

  33. Tian Y, Cheng Y, Huang J, et al. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res, 2022, 15: 6628–6635

    Article  CAS  Google Scholar 

  34. Mattinen M, Popov G, Vehkamäki M, et al. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem Mater, 2019, 31: 5713–5724

    Article  CAS  Google Scholar 

  35. Mañas-Valero S, García-López V, Cantarero A, et al. Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers. Appl Sci, 2016, 6: 264

    Article  Google Scholar 

  36. Jadczak J, Dumcenco DO, Huang YS, et al. Composition dependent lattice dynamics in MoSxSe(2−x) alloys. J Appl Phys, 2014, 116: 193505

    Article  Google Scholar 

  37. Wang Z, Liu P, Ito Y, et al. Chemical vapor deposition of monolayer Mo1−xWxS2 crystals with tunable band gaps. Sci Rep, 2016, 6: 21536

    Article  CAS  Google Scholar 

  38. Ghafari A, Boochani A, Janowitz C, et al. Electronic structure of ZrSxSe2−x by Tran-Blaha modified Becke-Johnson density functional. Phys Rev B, 2011, 84: 125205

    Article  Google Scholar 

  39. Ghafari A, Janowitz C. Electronic and thermoelectric properties of ZrSxSe2−x. Comput Mater Sci, 2019, 169: 109109

    Article  CAS  Google Scholar 

  40. Lebègue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B, 2009, 79: 115409

    Article  Google Scholar 

  41. Alfalasi W, Al Qasir I, Tit N. Origins of bandgap bowing character in the common-anion transition-metal-dichalcogenide ternary alloyed monolayer: Ab initio investigation. New J Phys, 2021, 23: 103027

    Article  CAS  Google Scholar 

  42. Wang D, Meng J, Zhang X, et al. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors. Chem Mater, 2018, 30: 3819–3826

    Article  CAS  Google Scholar 

  43. Yan C, Gan L, Zhou X, et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv Funct Mater, 2017, 27: 1702918

    Article  Google Scholar 

  44. Mo H, Zhang X, Liu Y, et al. Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse. ACS Appl Mater Interfaces, 2019, 11: 39077–39087

    Article  CAS  Google Scholar 

  45. Yu J, Xu CY, Li Y, et al. Ternary SnS2−xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications. Sci Rep, 2015, 5: 17109

    Article  CAS  Google Scholar 

  46. Zhang J, Qian Y, Nan H, et al. Large-scale MoS2(1−x)Se2x monolayers synthesized by confined-space CVD. Nanotechnology, 2021, 32: 355601

    Article  CAS  Google Scholar 

  47. Zheng B, Chen Y, Wang Z, et al. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater, 2016, 3: 035024

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61874106 and 62274151) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB43000000).

Author information

Authors and Affiliations

Authors

Contributions

Huang J, Li X, and Zhang X conceived and designed the project and wrote the manuscript. Huang J and Tian Y prepared the samples and performed the experiments; Chen J and Zhang S participated in the investigation; Cheng Y and Yin Z performed the DFT calculations; Li J, Jiang J, and Wang G participated in the analysis of the data; Zhang X supervised the project; all authors contributed to the general discussion. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xingxing Li  (李星星) or Xingwang Zhang  (张兴旺).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Jidong Huang received his BEng degree from the College of Physics, Qingdao University. He is a Master’s degree candidate under the supervision of Prof. Xingwang Zhang. His research interest focuses on 2D materials and their applications.

Xingxing Li received his Master’s degree from Hubei University in 2016 and PhD degree from the University of Chinese Academy of Sciences in 2019. He joined the Faculty of Intelligent Manufacturing, Wuyi University in 2019. His research focuses on oxide thin films, 2D materials, and semiconductor devices.

Xingwang Zhang is a full professor at the Institute of Semiconductors, Chinese Academy of Sciences. He received his BSc and PhD degrees from Lanzhou University in 1994 and 1999, respectively. Afterward, he worked as a postdoctoral fellow at The Chinese University of Hong Kong from 1999 to 2001. Then, he worked as a Humboldt research fellow at the University of Ulm, Germany, from 2001 to 2004. His current research interests include ultrawide bandgap semiconductors, 2D materials, and photovoltaic materials and devices.

Electronic Supplementary Material

40843_2022_2297_MOESM1_ESM.pdf

Large-area epitaxial growth of 2D ZrS2(1−x)Se2x semiconductor alloys with fully tunable compositions and bandgaps for optoelectronics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Tian, Y., Cheng, Y. et al. Large-area epitaxial growth of 2D ZrS2(1−x)Se2x semiconductor alloys with fully tunable compositions and bandgaps for optoelectronics. Sci. China Mater. 66, 1870–1878 (2023). https://doi.org/10.1007/s40843-022-2297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2297-1

Keywords

Navigation