Skip to main content
Log in

Flexible freestanding conductive nanopaper based on PPy:PSS nanocellulose composite for supercapacitors with high performance

基于PPy:PSS纳米纤维素复合材料的高性能柔性独立导电纳米纸用于超级电容器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A freestanding, binder-free flexible polypyrrole: polystyrene sulfonate/cellulose nanopaper (PPy:PSS/CNP) electrode is successfully fabricated by a low-cost, simple, and fast vacuum filtration method for the first time. The hierarchical structure of CNP with high surface area and good mechanical strength not only provides a high electroactive region and shortens the diffusion distance of electrolyte ions, but also mitigates the volumetric expansion/shrinkage of the PPy during the charging/discharging process. The optimized PPy:PSS/CNP exhibits a high areal specific capacitance of 3.8 F cm−2 (corresponding to 475 F cm−3 and 240 F g−1) at 10 mV s−1 and good cycling stability (80.9% capacitance retention after 5000 cycles). The cyclic voltammetry curves of PPy:PSS/CNP at different bending angles indicate prominent flexibility and electrochemical stability of the electrode. Moreover, a symmetric supercapacitor device is assembled and delivers a high areal energy density of 122 µ cm−2 (15 W h cm−3) at a power density of 4.4 mW cm−2 (550 mW cm−3), which is superior to other cellulose-based materials. The combination of high supercapacitive performance, flexibility, easy fabrication, and cheapness of the PPy: PSS/CNP electrodes offers great potential for developing the next generation of green and economical portable and wearable consumer electronics.

摘要

本工作通过低成本、 简单、 快速的真空过滤方法首次成功制备了一种独立的、 无粘合剂的柔性聚吡咯:聚磺苯乙烯/纤维素纳米纸电极(PPy:PSS/CNP). 多层结构的纤维素纳米纸具有较高的表面积和良好的机械强度, 不仅提供了高的电活性区域, 缩短了电解质离子的扩散距离, 而且还阻止了PPy在充电/放电过程中的体积膨胀/收缩. 优化后的PPy:PSS/CNP在10 mV s−1时表现出3.8 F cm−2(对应于475 F cm−3和240 F g−1)的高比电容和良好的循环稳定性(在5000次循环后有80.9%的电容保持率). PPy:PSS/CNP在不同弯曲角度下的循环伏安曲线表明电极具有突出的柔韧性和电化学稳定性. 此外, 组装的对称超级电容器器件在功率密度为4.4 mW cm−2(550 mW cm−3)的情况下, 提供了122 µW h cm−2(15 W h cm−3)的高面积能量密度, 这个值优于其他基于纤维素电极材料制备的器件. PPy:PSS/CNP电极结合了高电容性能、 灵活性、 易于制造和廉价多个优势, 为开发下一代绿色、经济便携式和可穿戴电子产品提供了巨大潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poonam, Sharma K, Arora A, et al. Review of supercapacitors: Materials and devices. J Energy Storage, 2019, 21: 801–825

    Article  Google Scholar 

  2. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012, 41: 797–828

    Article  CAS  Google Scholar 

  3. Wang Y, Wu X, Han Y, et al. Flexible supercapacitor: Overview and outlooks. J Energy Storage, 2021, 42: 103053

    Article  Google Scholar 

  4. Chee WK, Lim HN, Zainal Z, et al. Flexible graphene-based supercapacitors: A review. J Phys Chem C, 2016, 120: 4153–4172

    Article  CAS  Google Scholar 

  5. Hillier N, Yong S, Beeby S. The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Rep, 2020, 6: 148–156

    Article  Google Scholar 

  6. Huang Y, Li H, Wang Z, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22: 422–438

    Article  CAS  Google Scholar 

  7. Yi TF, Qiu LY, Mei J, et al. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull, 2020, 65: 546–556

    Article  CAS  Google Scholar 

  8. Fu H, Du Z, Zou W, et al. Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. J Mater Chem A, 2013, 1: 14943

    Article  CAS  Google Scholar 

  9. Qian T, Yu C, Wu S, et al. A facilely prepared polypyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. J Mater Chem A, 2013, 1: 6539

    Article  CAS  Google Scholar 

  10. Gahlout P, Choudhary V. Tailoring of polypyrrole backbone by optimizing synthesis parameters for efficient EMI shielding properties in X-band (8.2–12.4 GHz). Synth Met, 2016, 222: 170–179

    Article  CAS  Google Scholar 

  11. Huang YM, Zhou F, Deng Y, et al. Effects of salt 9,10-anthraquinone-2-sulfonic acid sodium on the conductivity of polypyrrole. Solid State Ion, 2008, 179: 1305–1309

    Article  CAS  Google Scholar 

  12. Wang W, Li Z, Jiang T, et al. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: A novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors. ACS Appl Mater Interfaces, 2012, 4: 6080–6084

    Article  CAS  Google Scholar 

  13. Malik RS, Tripathi SN, Gupta D, et al. Novel anhydrous composite membranes based on sulfonated poly(ether ketone) and aprotic ionic liquids for high temperature polymer electrolyte membranes for fuel cell applications. Int J Hydrogen Energy, 2014, 39: 12826–12834

    Article  CAS  Google Scholar 

  14. Ouyang J, Chu CW, Chen FC, et al. High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater, 2005, 15: 203–208

    Article  CAS  Google Scholar 

  15. Maruthamuthu S, Chandrasekaran J, Manoharan D, et al. Conductivity and dielectric analysis of nanocolloidal polypyrrole particles functionalized with higher weight percentage of poly(styrene sulfonate) using the dispersion polymerization method. J Polym Eng, 2017, 37: 481–492

    Article  CAS  Google Scholar 

  16. Miao C, Du H, Zhang X, et al. Dynamic crack initiation and growth in cellulose nanopaper. Cellulose, 2021, 29: 557–569

    Article  Google Scholar 

  17. Liu H, Du H, Zheng T, et al. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J, 2021, 426: 130817

    Article  CAS  Google Scholar 

  18. Zhao D, Zhang Q, Chen W, et al. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Interfaces, 2017, 9: 13213–13222

    Article  CAS  Google Scholar 

  19. Jyothibasu JP, Kuo DW, Lee RH. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose, 2019, 26: 4495–4513

    Article  CAS  Google Scholar 

  20. Du H, Zhang M, Liu K, et al. Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J, 2022, 428: 131994

    Article  CAS  Google Scholar 

  21. Parit M, Du H, Zhang X, et al. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydrate Polyms, 2020, 240: 116304

    Article  CAS  Google Scholar 

  22. Li S, Shi Q, Li Y, et al. Intercalation of metal ions into Ti3C2Tx MXene electrodes for high-areal-capacitance microsupercapacitors with neutral multivalent electrolytes. Adv Funct Mater, 2020, 30: 2003721

    Article  Google Scholar 

  23. Wan C, Jiao Y, Li J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A, 2017, 5: 3819–3831

    Article  CAS  Google Scholar 

  24. Maruthamuthu S, Chandrasekaran J, Manoharan D, et al. Effect of CuBr2 salt treatment on the performance of nanocolloidal PPy:PSS multilayer thin film counter electrodes of dye-sensitized solar cells. J Appl Polym Sci, 2016, 133: 43114

    Article  Google Scholar 

  25. Lay M, Pèlach MÀ, Pellicer N, et al. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. Carbohydrate Polyms, 2017, 165: 86–95

    Article  CAS  Google Scholar 

  26. Fei X, Wang J, Zhu J, et al. Biobased poly(ethylene 2,5-furancoate): No longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain Chem Eng, 2020, 8: 8471–8485

    Article  CAS  Google Scholar 

  27. Fei G, Wang Y, Wang H, et al. Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng, 2019, 7: 8215–8225

    Article  CAS  Google Scholar 

  28. Li Y, Zhang H, Ni S, et al. In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network. Mater Lett, 2018, 232: 175–178

    Article  CAS  Google Scholar 

  29. Kashani H, Chen L, Ito Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19: 391–400

    Article  CAS  Google Scholar 

  30. Zhang J, Chen P, Oh BHL, et al. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale, 2013, 5: 9860–9866

    Article  CAS  Google Scholar 

  31. Guan X, Pan L, Fan Z. Flexible, transparent and highly conductive polymer film electrodes for all-solid-state transparent supercapacitor applications. Membranes, 2021, 11: 788

    Article  CAS  Google Scholar 

  32. Du H, Parit M, Liu K, et al. Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydrate Polyms, 2021, 270: 118372

    Article  CAS  Google Scholar 

  33. Miao F, Shao C, Li X, et al. Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain Chem Eng, 2016, 4: 1689–1696

    Article  CAS  Google Scholar 

  34. Xia L, Li X, Wu Y, et al. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chem Eng J, 2020, 379: 122325

    Article  CAS  Google Scholar 

  35. Hou M, Xu M, Hu Y, et al. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim Acta, 2019, 313: 245–254

    Article  CAS  Google Scholar 

  36. Olsson H, Nyström G, Strømme M, et al. Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochem Commun, 2011, 13: 869–871

    Article  CAS  Google Scholar 

  37. Koga H, Tonomura H, Nogi M, et al. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chem, 2016, 18: 1117–1124

    Article  CAS  Google Scholar 

  38. Anothumakkool B, Soni R, Bhange SN, et al. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci, 2015, 8: 1339–1347

    Article  CAS  Google Scholar 

  39. Wang T, Zhang W, Yang S, et al. Preparation of foam-like network structure of polypyrrole/graphene composite particles based on cellulose nanofibrils as electrode material. ACS Omega, 2020, 5: 4778–4786

    Article  CAS  Google Scholar 

  40. Fu Q, Wang Y, Liang S, et al. High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state super-capacitors. J Solid State Electrochem, 2020, 24: 533–544

    Article  CAS  Google Scholar 

  41. Li B, Lopez-Beltran H, Siu C, et al. Vaper phase polymerized PEDOT/cellulose paper composite for flexible solid-state supercapacitor. ACS Appl Energy Mater, 2020, 3: 1559–1568

    Article  CAS  Google Scholar 

  42. Gao K, Shao Z, Wang X, et al. Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv, 2013, 3: 15058

    Article  CAS  Google Scholar 

  43. Lyu S, Chen Y, Zhang L, et al. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors. RSC Adv, 2019, 9: 17824–17834

    Article  CAS  Google Scholar 

  44. Zheng Q, Cai Z, Ma Z, et al. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solidstate supercapacitors. ACS Appl Mater Interfaces, 2015, 7: 3263–3271

    Article  CAS  Google Scholar 

  45. Zou Z, Zhou W, Zhang Y, et al. High-performance flexible all-solidstate supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J, 2019, 357: 45–55

    Article  CAS  Google Scholar 

  46. Liu R, Ma L, Huang S, et al. A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem, 2017, 41: 857–864

    Article  CAS  Google Scholar 

  47. Wang W, Yang Y, Chen Z, et al. High-performance yarn supercapacitor based on directly twisted carbon nanotube@bacterial cellulose membrane. Cellulose, 2020, 27: 7649–7661

    Article  CAS  Google Scholar 

  48. Bai Y, Liu R, Li E, et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloys Compd, 2019, 777: 524–530

    Article  CAS  Google Scholar 

  49. Ma L, Liu R, Niu H, et al. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Compos Sci Tech, 2016, 137: 87–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation (CMMI-2113948). Liang Y acknowledges the financial support from China Scholarship Council (201708510080).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang X conceived the idea. Liang Y designed and performed the experiments with the help from Wang HE. Wei Z performed the SEM test. Liang Y analyzed the data and drafted the manuscript. Zhang X and Wang R supervised the whole research. All authors participated in the general discussion.

Corresponding authors

Correspondence to Ruigang Wang  (王瑞刚) or Xinyu Zhang  (张新宇).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yue Liang received her master’s degree from China West Normal University in June 2017. Since 2018, she has been studying as a doctoral candidate in the group of Prof. Xinyu Zhang at the Department of Chemical Engineering, Auburn University. Her research interests mainly focus on microwave-initiated ultrafast nanomanufacturing for hierarchical, multifunctional nanomaterials and nanocomposites, and the fabrication of flexible electrodes based on conducting polymers.

Ruigang Wang received his doctorate with Prof. Peter Crozier and Dr. Renu Sharma in materials science and engineering from Arizona State University in 2007. In August 2016, he joined the Department of Metallurgical and Materials Engineering, The University of Alabama as an associate professor. His research mainly focuses on shape/size-controlled synthesis of metal oxides, emission control catalysts, support structure effect in metal-oxide catalysis, materials for energy capture, storage and conversion, metal recycling, and high temperature ceramics processing.

Xinyu Zhang received his doctorate with Prof. Alan G. MacDiarmid and Dr. Sanjeev K. Manohar in materials chemistry from the University of Texas at Dallas in 2005. He is a professor in chemical engineering at Auburn University and his research mainly focuses on microwave-initiated ultrafast nanomanufacturing for hierarchical, multifunctional nanomaterials and nanocomposites, multifunctional polymer coating for anti-corrosion and antimicrobial applications, and green approach to conducting polymer-based nanocomposites for catalysis, sensing and energy storage applications.

Supporting information

40843_2022_2225_MOESM1_ESM.pdf

Flexible freestanding conductive nanopaper based on PPy:PSS nanocellulose composite for supercapacitors with high performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Wei, Z., Wang, HE. et al. Flexible freestanding conductive nanopaper based on PPy:PSS nanocellulose composite for supercapacitors with high performance. Sci. China Mater. 66, 964–973 (2023). https://doi.org/10.1007/s40843-022-2225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2225-x

Keywords

Navigation