Skip to main content
Log in

Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Conductive films have emerged as appealing electrode materials in flexible supercapacitors owing to their conductivity and mechanical flexibility. However, the unsatisfactory electrode structure induced poor output performance and undesirable cycling stability limited their application. Herein, a well-designed film was manufactured by the vacuum filtration and in-situ polymerization method from cellulose nanofibrils (CNFs), molybdenum disulfide (MoS2), and polypyrrole. The electrode presented an outstanding mechanical strength (21.3 MPa) and electrical conductivity (9.70 S·cm−1). Meanwhile, the introduce of hydrophilic CNFs induced a desirable increase in diffusion path of electrons and ions, along with the synergistic effect among the three components, further endowed the electrode with excellent specific capacitance (0.734 F·cm−2) and good cycling stability (84.50% after 2000 charge/discharge cycles). More importantly, the flexible all-solid-state symmetric supercapacitor delivered a high specific capacitance (1.39 F·cm−2 at 1 mA·cm−2) and a volumetric energy density (6.36 mW·h·cm−3 at the power density of 16.35 mW·cm−3). This work provided a method for preparing composite films with desired mechanical and electrochemical performance, which can broaden the high-value applications of nanocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Chen S, Pang H, et al. MoS2-based nanocomposites for electrochemical energy storage. Advanced Science, 2017, 4(2): 1600289

    Article  CAS  Google Scholar 

  2. Dubal D P C, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47(6): 2065–2129

    Article  CAS  Google Scholar 

  3. Pendashteh A, Mousavi M F, Rahmanifar M S. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochimica Acta, 2013, 88: 347–357

    Article  CAS  Google Scholar 

  4. Li S, Huang D, Yang J, et al. Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 2014, 9: 309–317

    Article  CAS  Google Scholar 

  5. Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016, 1(6): 16070

    Article  CAS  Google Scholar 

  6. Nyholm L, Nyström G, Mihranyan A, et al. Toward flexible polymer and paper-based energy storage devices. Advanced Materials, 2011, 23(33): 3751–3769

    CAS  Google Scholar 

  7. Matte H S S R, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062

    Article  CAS  Google Scholar 

  8. Wang G, Bi X, Yue H, et al. Sacrificial template synthesis of hollow C@MoS2@PPy nanocomposites as anodes for enhanced sodium storage performance. Nano Energy, 2019, 60: 362–370

    Article  CAS  Google Scholar 

  9. Ma G, Peng H, Mu J, et al. In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. Journal of Power Sources, 2013, 229: 72–78

    Article  CAS  Google Scholar 

  10. Tian Y, Song X, Liu J, et al. Generation of monolayer MoS2 with 1T Phase by spatial-confinement-induced ultrathin PPy anchoring for high-performance supercapacitor. Advanced Materials Interfaces, 2019, 6(10): 1900162

    Article  CAS  Google Scholar 

  11. Cao W, Ma C, Tan S, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Letters, 2019, 11(1): 72

    Article  CAS  Google Scholar 

  12. Cao W T, Chen F F, Zhu Y J, et al. Binary strengthening and toughening of MXene cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593

    Article  CAS  Google Scholar 

  13. Cao W, Ma C, Mao D, et al. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Advanced Functional Materials, 2019, 29(51): 1905898

    Article  CAS  Google Scholar 

  14. Zhang F, Tang Y, Yang Y, et al. In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochimica Acta, 2016, 211: 404–410

    Article  CAS  Google Scholar 

  15. Yang L, Mukhopadhyay A, Jiao Y, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale, 2017, 9(32): 11452–11462

    Article  CAS  Google Scholar 

  16. Du X, Zhang Z, Liu W, et al. Nanocellulose-based conductive materials and their emerging applications in energy devices — A review. Nano Energy, 2017, 35: 299–320

    Article  CAS  Google Scholar 

  17. Wang Z, Tammela P, Strømme M, et al. Cellulose-based supercapacitors: material and performance considerations. Advanced Energy Materials, 2017, 7(18): 1700130

    Article  CAS  Google Scholar 

  18. Wan C, Jiao Y, Li J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(8): 3819–3831

    Article  CAS  Google Scholar 

  19. Ma C, Cao W, Xin W, et al. Flexible and free-standing reduced graphene oxide and polypyrrole coated air-laid paper-based supercapacitor electrodes. Industrial & Engineering Chemistry Research, 2019, 58(27): 12018–12027

    Article  CAS  Google Scholar 

  20. Fu Q, Wang Y, Liang S, et al. High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state supercapacitors. Journal of Solid State Electrochemistry, 2020, 24(3): 533–544

    Article  CAS  Google Scholar 

  21. Huang K, Wang L, Liu Y, et al. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochimica Acta, 2013, 109: 587–594

    Article  CAS  Google Scholar 

  22. Wang D, Li Y X, Shi Z, et al. Spontaneous growth of free-standing polypyrrole films at an air/ionic liquid interface. Langmuir, 2010, 26(18): 14405–14408

    Article  CAS  Google Scholar 

  23. Xu J, Wang D, Yuan Y, et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics, 2015, 24: 153–159

    Article  CAS  Google Scholar 

  24. Oh S Y, Yoo D I, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 2005, 340(15): 2376–2391

    Article  CAS  Google Scholar 

  25. Lei J, Lu X, Nie G, et al. One-pot synthesis of algae-like MoS2/PPy nanocomposite: A synergistic catalyst with superior peroxidase-like catalytic activity for H2O2 detection. Particle & Particle Systems Characterization, 2015, 32(9): 886–892

    Article  CAS  Google Scholar 

  26. Yuan L, Yao B, Hu B, et al. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 2013, 6(2): 470

    Article  CAS  Google Scholar 

  27. Omastova M, Trchova M, Kovarova J, et al. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 2003, 138(3): 447–455

    Article  CAS  Google Scholar 

  28. Peng H, Ma G, Ying W, et al. In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors. Journal of Power Sources, 2012, 211: 40–45

    Article  CAS  Google Scholar 

  29. Cadot S, Renault O, Frégnaux M, et al. A novel 2-step ALD route to ultra-thin MoS2 films on SiO2 through a surface organometallic intermediate. Nanoscale, 2017, 9(2): 538–546

    Article  CAS  Google Scholar 

  30. Yuan L, Yao B, Hu B, et al. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 2013, 6(2): 470

    Article  CAS  Google Scholar 

  31. Guan S, Fu X, Lao Z, et al. NiS-MoS2 hetero-nanosheet arrays on carbon cloth for high-performance flexible hybrid energy storage devices. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11672–11681

    Article  CAS  Google Scholar 

  32. Peng S, Fan L, Wei C, et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as super-capacitor electrodes. Carbohydrate Polymers, 2017, 157: 344–352

    Article  CAS  Google Scholar 

  33. Wang G, Bi X, Yue H, et al. Sacrificial template synthesis of hollow C@MoS2@PPy nanocomposites as anodes for enhanced sodium storage performance. Nano Energy, 2019, 60: 362–370

    Article  CAS  Google Scholar 

  34. Wang Z, Carlsson D O, Tammela P, et al. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano, 2015, 9(7): 7563–7571

    Article  CAS  Google Scholar 

  35. Ge Y, Jalili R, Wang C, et al. A robust free-standing MoS2/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235: 348–355

    Article  CAS  Google Scholar 

  36. Yao B, Yuan L, Xiao X, et al. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2(6): 1071–1078

    Article  CAS  Google Scholar 

  37. Wang L, Yang H, Liu X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angewandte Chemie International Edition, 2017, 56(4): 1105–1110

    Article  CAS  Google Scholar 

  38. VahidMohammadi A, Mojtabavi M, Caffrey N M, et al. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Advanced Materials, 2019, 31(8): 1806931

    Article  CAS  Google Scholar 

  39. Xiao Y, Huang L, Zhang Q, et al. Gravure printing of hybrid MoS2@S-rGO interdigitated electrodes for flexible microsupercapacitors. Applied Physics Letters, 2015, 107(1): 013906

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Key R&D Program of China (2019YFC1905901), the Beijing Forestry University Outstanding Young Talent Cultivation Project (2019JQ03014), and the Key Production Innovative Development Plan of the Southern Bingtuan (2019DB007) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guo Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Ma, MG. Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes. Front. Mater. Sci. 15, 227–240 (2021). https://doi.org/10.1007/s11706-021-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0549-5

Keywords

Navigation