Skip to main content
Log in

Topological defects and their induced metallicity in monolayer semiconducting γ-phase group IV monochalcogenides

单层半导体性γ相第四主族单硫化合物中的拓扑缺陷及其诱导的金属性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

γ-Phase group IV monochalcogenides (γ-MX), predicted to be stable with semiconducting characteristics, have been synthesized by chemical vapor deposition but showing metallicity. The ubiquitous topological defects introduced during the growth process could bring about key influences on the electronic behaviors, but their structures and properties remain unexplored. Taking monolayer γ-GeSe as an example, first-principles calculations were performed to investigate the structural, thermodynamic, and electronic properties of dislocation cores (DCs) and grain boundaries (GBs). Various derivative DCs emerge depending on different arrangements of atoms. The calculated low-energy DCs are then used to determine preferential structures of GBs versus tilt angle, with special attention paid to the whole family of 60° twin GBs, showing distinct hexagons or Ge—Ge bonds. Furthermore, electronic structures are calculated for thermodynamically favored 21.8° with closely packed dislocations and 60° twin GBs. Most of them show a strong resonance between the bulk and dislocation states, rendering the systems metallic, while some display semiconducting behaviors with reduced band gap. These electronic properties are universal for other γ-MXs. The simulated scanning tunneling microscopy images show characteristic fingerprints to help identify their existence in practice. Our results show that topological defects in γ-MX with versatile properties should be carefully engineered for their potential applications.

摘要

γ相第四主族单硫化合物(γ-MX)是理论预测出的一种全新的具有半导体特性的稳定结构. 最近, 人们通过化学气相沉积法成功合成了相关材料, 但样品却表现出金属性. 生长过程引入的拓扑缺陷无处不在, 可能会对材料电子行为带来重要影响. 但是, 关于这些拓扑缺陷的结构和性质的研究仍未开展. 以γ相GeSe为例, 我们通过第一性原理计算系统研究了其位错核和晶界的结构、 热力学和电子性质. 结果发现, 不同的原子排布方式可以形成多样的衍生位错核. 基于最低能量的位错核, 我们研究了晶界结构随着倾斜角的变化, 并特别构建了全部可能的60° 孪生晶界, 发现它们具有独特的六边形结构或Ge–Ge键. 进一步地, 针对能量最低的21.8°和60°晶界的电子结构分析发现, 大多数晶界体态和缺陷态之间具有共振作用, 这使得体系表现出金属性质; 而某些结构则仍表现半导体性, 但带隙显著减小. 这些电子性质在其他γ-MX中也普遍存在. 不同晶界的扫描隧道显微镜图像展现出特征性图案, 可以作为表征它们的手段. 我们的结果表明, 应对γ-MX中具有多样性质的拓扑缺陷进行有目的的设计以促进其潜在应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  CAS  Google Scholar 

  2. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    Article  CAS  Google Scholar 

  3. Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  CAS  Google Scholar 

  4. Tan CL, Cao XH, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331

    Article  CAS  Google Scholar 

  5. Deng D, Novoselov KS, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nat Nanotech, 2016, 11: 218–230

    Article  CAS  Google Scholar 

  6. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098

    Article  CAS  Google Scholar 

  7. Ma S, Cai M, Cheng T, et al. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Sci China Mater, 2018, 61: 1257–1277

    Article  CAS  Google Scholar 

  8. Hou H, Zeng X, Zhang X. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci China Mater, 2020, 63: 2119–2152

    Article  CAS  Google Scholar 

  9. Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377

    Article  CAS  Google Scholar 

  10. Fei R, Li W, Li J, et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett, 2015, 107: 173104

    Article  Google Scholar 

  11. Zhang S, Liu S, Huang S, et al. Structural and electronic properties of atomically thin germanium selenide polymorphs. Sci China Mater, 2015, 58: 929–935

    Article  CAS  Google Scholar 

  12. Wu M, Zeng XC. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett, 2016, 16: 3236–3241

    Article  CAS  Google Scholar 

  13. Barraza-Lopez S, Fregoso BM, Villanova JW, et al. Colloquium: Physical properties of group-IV monochalcogenide monolayers. Rev Mod Phys, 2021, 93: 011001

    Article  CAS  Google Scholar 

  14. Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278

    Article  CAS  Google Scholar 

  15. Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys Rev Lett, 2016, 117: 097601

    Article  Google Scholar 

  16. Haleoot R, Paillard C, Kaloni TP, et al. Photostrictive two-dimensional materials in the monochalcogenide family. Phys Rev Lett, 2017, 118: 227401

    Article  Google Scholar 

  17. He Y, Tang P, Hu Z, et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat Commun, 2020, 11: 57

    Article  CAS  Google Scholar 

  18. Ji Y, Yang M, Dong H, et al. Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale, 2017, 9: 8608–8615

    Article  CAS  Google Scholar 

  19. Kim J, Kim KW, Shin D, et al. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat Commun, 2019, 10: 3965

    Article  Google Scholar 

  20. Zhu Z, Tománek D. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 2014, 112: 176802

    Article  Google Scholar 

  21. Wang H, Qian X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater, 2017, 4: 015042

    Article  Google Scholar 

  22. Kennes DM, Xian L, Claassen M, et al. One-dimensional flat bands in twisted bilayer germanium selenide. Nat Commun, 2020, 11: 1124

    Article  CAS  Google Scholar 

  23. Tian XQ, Duan JY, Kiani M, et al. Hexagonal layered group IV–VI semiconductors and derivatives: Fresh blood of the 2D family. Nanoscale, 2020, 12: 13450–13459

    Article  CAS  Google Scholar 

  24. Mu X, Pan Y, Zhou J. Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials. npj Comput Mater, 2021, 7: 61

    Article  CAS  Google Scholar 

  25. Xu B, Deng J, Ding X, et al. Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides. npj Comput Mater, 2022, 8: 47

    Article  CAS  Google Scholar 

  26. Luo N, Duan W, Yakobson BI, et al. Excitons and electron-hole liquid state in 2D γ-phase group-IV monochalcogenides. Adv Funct Mater, 2020, 30: 2000533

    Article  CAS  Google Scholar 

  27. Kim H, Choi HJ. Quasiparticle band structures, spontaneous polarization, and spin-splitting in noncentrosymmetric few-layer and bulk γ-GeSe. J Mater Chem C, 2021, 9: 9683–9691

    Article  CAS  Google Scholar 

  28. Lee S, Jung JE, Kim HG, et al. γ-GeSe: A new hexagonal polymorph from group IV–VI monochalcogenides. Nano Lett, 2021, 21: 4305–4313

    Article  CAS  Google Scholar 

  29. Zou X, Liu Y, Yakobson BI. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett, 2013, 13: 253–258

    Article  CAS  Google Scholar 

  30. Yazyev OV, Chen YP. Polycrystalline graphene and other two-dimensional materials. Nat Nanotech, 2014, 9: 755–767

    Article  CAS  Google Scholar 

  31. Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759

    Article  CAS  Google Scholar 

  32. Liu Y, Yakobson BI. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett, 2010, 10: 2178–2183

    Article  CAS  Google Scholar 

  33. Zhang Z, Zou X, Crespi VH, et al. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano, 2013, 7: 10475–10481

    Article  CAS  Google Scholar 

  34. Zhou X, Zhang Z, Guo W. Dislocations as single photon sources in two-dimensional semiconductors. Nano Lett, 2020, 20: 4136–4143

    Article  CAS  Google Scholar 

  35. Zhang JJ, Guan J, Dong S, et al. Room-temperature ferroelectricity in group-IV metal chalcogenide nanowires. J Am Chem Soc, 2019, 141: 15040–15045

    Article  CAS  Google Scholar 

  36. Gao N, Guo Y, Zhou S, et al. Structures and magnetic properties of MoS2 grain boundaries with antisite defects. J Phys Chem C, 2017, 121: 12261–12269

    Article  CAS  Google Scholar 

  37. Guo Y, Zhou S, Zhang J, et al. Atomic structures and electronic properties of phosphorene grain boundaries. 2D Mater, 2016, 3: 025008

    Article  Google Scholar 

  38. Gibertini M, Marzari N. Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures. Nano Lett, 2015, 15: 6229–6238

    Article  CAS  Google Scholar 

  39. Zou X, Liu M, Shi Z, et al. Environment-controlled dislocation migration and superplasticity in monolayer MoS2. Nano Lett, 2015, 15: 3495–3500

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  43. Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B, 1999, 59: 7413–7421

    Article  Google Scholar 

  44. Tersoff J, Hamann DR. Theory of the scanning tunneling microscope. Phys Rev B, 1985, 31: 805–813

    Article  CAS  Google Scholar 

  45. Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystlogr, 2011, 44: 1272–1276

    Article  CAS  Google Scholar 

  46. Liu YY, Zou XL, Yakobson BI. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano, 2012, 6: 7053–7058

    Article  CAS  Google Scholar 

  47. Li WX, Stampfl C, Scheffler M. Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics. Phys Rev B, 2003, 68: 165412

    Article  Google Scholar 

  48. Duan X, Warschkow O, Soon A, et al. Density functional study of oxygen on Cu(100) and Cu(110) surfaces. Phys Rev B, 2010, 81: 075430

    Article  Google Scholar 

  49. Zou XL, Yakobson BI. An open canvas—2D materials with defects, disorder, and functionality. Acc Chem Res, 2015, 48: 73–80

    Article  CAS  Google Scholar 

  50. Zou X, Yakobson BI. Metallic high-angle grain boundaries in monolayer polycrystalline WS2. Small, 2015, 11: 4503–4507

    Article  CAS  Google Scholar 

  51. Yazyev OV, Louie SG. Topological defects in graphene: Dislocations and grain boundaries. Phys Rev B, 2010, 81: 195420

    Article  Google Scholar 

  52. Ma YJ, Kolekar S, Diaz HC, et al. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy. ACS Nano, 2017, 11: 5130–5139

    Article  CAS  Google Scholar 

  53. Ma YJ, Diaz HC, Avila J, et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat Commun, 2017, 8: 14231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11974197 and 51920105002), Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C341), and the Bureau of Industry and Information Technology of Shenzhen for the 2017 Graphene Manufacturing Innovation Center Project (201901171523)

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zou X conceptualized this work. Zeng S conducted the first-principles calculations. Zeng S and Zou X contributed to the discussion and the writing of the manuscript, with approval to the final version of the manuscript.

Corresponding author

Correspondence to Xiaolong Zou  (邹小龙).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary Information Supporting data are available in the online version of the paper.

Shengfeng Zeng is a PhD candidate in Prof. Xiaolong Zou’s group at Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School. He obtained his BSc degree in materials science and engineering from the University of Science and Technology Beijing in 2020. His research mainly focuses on the topological defects and the optical behaviors of defects in 2D materials.

Xiaolong Zou received his BSc degree in physics from Tsinghua University in 2006 and PhD degree in condensed matter physics from Tsinghua University in Prof. Wenhui Duan’ group in 2011. Then he worked as a postdoctoral fellow at Rice University in Prof. Boris I Yakobson’s group from 2011 to 2016. He is currently an associate professor at Shenzhen Geim Graphene Center and Tsinghua Shenzhen International Graduate School, focusing on theoretical calculations on topological defects, magnetism and optical behaviors in 2D materials.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Zou, X. Topological defects and their induced metallicity in monolayer semiconducting γ-phase group IV monochalcogenides. Sci. China Mater. 66, 1132–1139 (2023). https://doi.org/10.1007/s40843-022-2221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2221-y

Keywords

Navigation