Skip to main content
Log in

Novel nanostructures suspended in graphene vacancies, edges and holes

悬浮于石墨烯空位/孔洞中的独立纳米结构

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Under electron beam irradiation, graphene is inclined to form defects (such as vacancies and holes) that can trap foreign atoms to form new structures. The interactions between these structures and graphene have garnered considerable research interest as they can yield exciting properties. This review focuses on the fabrication and characterization of free-standing nanostructures suspended in graphene using transmission electron microscopy, which enables the observations with atomic resolution and investigations of the dynamic behavior of atoms/structures in such materials. Additionally, the review discusses the influence of novel metal/nonmetal dopants in graphene vacancies with varying bond configurations and the catalytic activities of single atoms/clusters located at the graphene edges. Moreover, the dynamic forming process of freestanding single-atom-thick two-dimensional (2D) clusters/metal/metallenes and 2D clusters/metal/metallenes oxides is discussed. Understanding the behavior, stabilities, and macroscopic effects of these nanostructures is vital for the practical deployment of novel atom/molecule scale nanotechnology. Overall, accumulative evidence confirms the growing number of these novel nanostructures, implying a bright future for further exciting discoveries.

摘要

在电子束辐照下, 石墨烯较易形成空位、孔洞等缺陷, 从而捕获外来原子, 形成新的结构. 由于这些结构具有一些令人兴奋的性质, 它们和石墨烯之间的相互作用引起了科研工作者相当大的研究兴趣. 本文总结了利用透射电子显微镜在制备和表征悬浮在石墨烯中的独立纳米结构的方法, 以及原子分辨率下观察到的此类材料中原子/结构的动态行为过程, 讨论了新型金属/非金属掺杂剂对具有不同键结构的石墨烯空位的影响, 以及位于石墨烯边缘的单原子/团簇的催化活性. 此外,还讨论了独立单原子厚二维团簇/金属/金属烯和二维团簇/金属/金属烯氧化物的动态形成过程. 并指出这些纳米结构的形成、稳定性和宏观效应对于新的原子/分子尺度纳米技术的实际应用至关重要. 以上数据证实了新型纳米结构的数量不断增加, 并预示着相关研究的不断深入.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangert U, Gass MH, Bleloch AL, et al. Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope. Phys Stat Sol (A), 2009, 206: 1117–1122

    Article  CAS  Google Scholar 

  2. Bao W, Miao F, Chen Z, et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotech, 2009, 4: 562–566

    Article  CAS  Google Scholar 

  3. Geringer V, Liebmann M, Echtermeyer T, et al. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Phys Rev Lett, 2009, 102: 076102

    Article  CAS  Google Scholar 

  4. Ishigami M, Chen JH, Cullen WG, et al. Atomic structure of graphene on SiO2. Nano Lett, 2007, 7: 1643–1648

    Article  CAS  Google Scholar 

  5. Liu Z, Suenaga K, Harris PJF, et al. Open and closed edges of graphene layers. Phys Rev Lett, 2009, 102: 015501

    Article  Google Scholar 

  6. Meyer JC, Geim AK, Katsnelson MI, et al. The structure of suspended graphene sheets. Nature, 2007, 446: 60–63

    Article  CAS  Google Scholar 

  7. Meyer JC, Geim AK, Katsnelson MI, et al. On the roughness of single-and bi-layer graphene membranes. Solid State Commun, 2007, 143: 101–109

    Article  CAS  Google Scholar 

  8. Wilson NR, Pandey PA, Beanland R, et al. On the structure and topography of free-standing chemically modified graphene. New J Phys, 2010, 12: 125010

    Article  Google Scholar 

  9. Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. Nat Mater, 2007, 6: 858–861

    Article  CAS  Google Scholar 

  10. Katsnelson MI, Geim AK. Electron scattering on microscopic corrugations in graphene. Phil Trans R Soc A, 2008, 366: 195–204

    Article  CAS  Google Scholar 

  11. Thompson-Flagg RC, Moura MJB, Marder M. Rippling of graphene. Europhys Lett, 2009, 85: 46002

    Article  Google Scholar 

  12. Neek-Amal M, Xu P, Schoelz JK, et al. Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy. Nat Commun, 2014, 5: 4962

    Article  CAS  Google Scholar 

  13. Braghin FL, Hasselmann N. Thermal fluctuations of free-standing graphene. Phys Rev B, 2010, 82: 035407

    Article  Google Scholar 

  14. Meyer JC, Eder F, Kurasch S, et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys Rev Lett, 2012, 108: 196102

    Article  Google Scholar 

  15. Yazyev OV, Chen YP. Polycrystalline graphene and other two-dimensional materials. Nat Nanotech, 2014, 9: 755–767

    Article  CAS  Google Scholar 

  16. Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano, 2011, 5: 26–41

    Article  CAS  Google Scholar 

  17. Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene. J Phys-Condens Matter, 2009, 21: 344205

    Article  CAS  Google Scholar 

  18. Kotakoski J, Meyer JC, Kurasch S, et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys Rev B, 2011, 83: 245420

    Article  Google Scholar 

  19. Koskinen P, Malola S, Häkkinen H. Evidence for graphene edges beyond zigzag and armchair. Phys Rev B, 2009, 80: 073401

    Article  Google Scholar 

  20. Cong C, Li K, Zhang XX, et al. Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci Rep, 2013, 3: 1195

    Article  Google Scholar 

  21. Wehling TO, Novoselov KS, Morozov SV, et al. Molecular doping of graphene. Nano Lett, 2008, 8: 173–177

    Article  CAS  Google Scholar 

  22. Arsat R, Breedon M, Shafiei M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett, 2009, 467: 344–347

    Article  CAS  Google Scholar 

  23. Wisitsoraat A, Phokaratkul D, Maturos T, Jaruwongrangsee K, Tuantranont A. Antimicrobial activity of graphene nanoplatelets against Streptococcus mutans. In: IEEE 15th International Conference on Nanotechnology (IEEE Nano). Rome, Italy, 2015, 89

    Google Scholar 

  24. Huang PY, Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469: 389–392

    Article  CAS  Google Scholar 

  25. Kim K, Lee Z, Regan W, et al. Grain boundary mapping in polycrystalline graphene. ACS Nano, 2011, 5: 2142–2146

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  27. Lahiri J, Lin Y, Bozkurt P, et al. An extended defect in graphene as a metallic wire. Nat Nanotech, 2010, 5: 326–329

    Article  CAS  Google Scholar 

  28. Yazyev OV, Louie SG. Electronic transport in polycrystalline graphene. Nat Mater, 2010, 9: 806–809

    Article  CAS  Google Scholar 

  29. Ugeda MM, Brihuega I, Hiebel F, et al. Electronic and structural characterization of divacancies in irradiated graphene. Phys Rev B, 2012, 85: 121402

    Article  Google Scholar 

  30. Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene with defects. Nano Lett, 2008, 8: 4373–4379

    Article  CAS  Google Scholar 

  31. Krasheninnikov AV, Nieminen RM. Attractive interaction between transition-metal atom impurities and vacancies in graphene: A first-principles study. Theor Chem Acc, 2011, 129: 625–630

    Article  CAS  Google Scholar 

  32. Cantele G, Lee YS, Ninno D, et al. Spin channels in functionalized graphene nanoribbons. Nano Lett, 2009, 9: 3425–3429

    Article  CAS  Google Scholar 

  33. Yazyev OV. Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys, 2010, 73: 056501

    Article  Google Scholar 

  34. Son YW, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347–349

    Article  CAS  Google Scholar 

  35. Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B, 2004, 70: 245416

    Article  Google Scholar 

  36. Mielke SL, Troya D, Zhang S, et al. The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett, 2004, 390: 413–420

    Article  CAS  Google Scholar 

  37. Kumatani A, Miura C, Kuramochi H, et al. Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction. Adv Sci, 2019, 6: 1900119

    Article  Google Scholar 

  38. Jiang D, Sumpter BG, Dai S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys, 2007, 126: 134701

    Article  Google Scholar 

  39. Krompiewski S. One edge magnetic configurations in graphene, stanene and phosphorene zigzag nanoribbons. J Magn Magn Mater, 2021, 534: 168036

    Article  CAS  Google Scholar 

  40. Lopez-Polin G, Gomez-Navarro C, Gomez-Herrero J. The effect of rippling on the mechanical properties of graphene. Nano Mater Sci, 2022, 4: 18–26

    Article  CAS  Google Scholar 

  41. Weon S, Huang D, Rigby K, et al. Environmental materials beyond and below the nanoscale: single-atom catalysts. ACS EST Eng, 2021, 1: 157–172

    Article  CAS  Google Scholar 

  42. Zhang L, Ren Y, Liu W, et al. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl Sci Rev, 2018, 5: 653–672

    Article  CAS  Google Scholar 

  43. Cheng N, Zhang L, Doyle-Davis K, et al. Single-atom catalysts: From design to application. Electrochem Energ Rev, 2019, 2: 539–573

    Article  Google Scholar 

  44. Kalinin SV, Pennycook SJ. Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bull, 2017, 42: 637–643

    Article  CAS  Google Scholar 

  45. Luo C, Wang C, Wu X, et al. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small, 2017, 13: 1604259

    Article  Google Scholar 

  46. Ngoc My Duong H, Nguyen MAP, Kianinia M, et al. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl Mater Interfaces, 2018, 10: 24886–24891

    Article  CAS  Google Scholar 

  47. Susi T, Meyer JC, Kotakoski J. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy, 2017, 180: 163–172

    Article  CAS  Google Scholar 

  48. Taha D, Mkhonta SK, Elder KR, et al. Grain boundary structures and collective dynamics of inversion domains in binary two-dimensional materials. Phys Rev Lett, 2017, 118: 255501

    Article  Google Scholar 

  49. Winter A, George A, Neumann C, et al. Lateral heterostructures of two-dimensional materials by electron-beam induced stitching. Carbon, 2018, 128: 106–116

    Article  CAS  Google Scholar 

  50. Rummeli MH, Ta HQ, Mendes RG, et al. New frontiers in electron beam-driven chemistry in and around graphene. Adv Mater, 2019, 31: 1800715

    Article  Google Scholar 

  51. Williams DB, Carter CB. Transmission Electron Microscopy, 1st ed. New York: Springer, 2009

    Book  Google Scholar 

  52. Antikainen S, Koskinen P. Growth of two-dimensional Au patches in graphene pores: A density-functional study. Comput Mater Sci, 2017, 131: 120–125

    Article  CAS  Google Scholar 

  53. Malola S, Häkkinen H, Koskinen P. Gold in graphene: In-plane adsorption and diffusion. Appl Phys Lett, 2009, 94: 043106

    Article  Google Scholar 

  54. Pastewka L, Malola S, Moseler M, et al. Li+ adsorption at prismatic graphite surfaces enhances interlayer cohesion. J Power Sources, 2013, 239: 321–325

    Article  CAS  Google Scholar 

  55. Nevalaita J, Koskinen P. Stability limits of elemental 2D metals in graphene pores. Nanoscale, 2019, 11: 22019–22024

    Article  CAS  Google Scholar 

  56. Rodriguez-Manzo JA, Banhart F. Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 Å diameter. Nano Lett, 2009, 9: 2285–2289

    Article  CAS  Google Scholar 

  57. Wettmarshausen S, Kühn G, Hidde G, et al. Plasmabromination—The selective way to monotype functionalized polymer surfaces. Plasma Processes Polym, 2007, 4: 832–839

    Article  CAS  Google Scholar 

  58. Fan X, Liu L, Kuo JL, et al. Functionalizing single- and multi-layer graphene with Br and Br2. J Phys Chem C, 2010, 114: 14939–14945

    Article  CAS  Google Scholar 

  59. Jung N, Kim N, Jockusch S, et al. Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation. Nano Lett, 2009, 9: 4133–4137

    Article  CAS  Google Scholar 

  60. Chu SW, Baek SJ, Kim DC, et al. Charge transport in graphene doped with diatomic halogen molecules (I2, Br2) near Dirac point. Synth Met, 2012, 162: 1689–1693

    Article  CAS  Google Scholar 

  61. Wu KH, Wang DW, Zeng Q, et al. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chin J Catal, 2014, 35: 884–890

    Article  CAS  Google Scholar 

  62. Jankovský O, Šimek P, Klimová K, et al. Towards graphene bromide: bromination of graphite oxide. Nanoscale, 2014, 6: 6065–6074

    Article  Google Scholar 

  63. Singh S, Mitra K, Shukla A, et al. Brominated graphene as mimetic peroxidase for sulfide ion recognition. Anal Chem, 2017, 89: 783–791

    Article  CAS  Google Scholar 

  64. Singh S, Singh M, Mitra K, et al. Electrochemical sensing of hydrogen peroxide using brominated graphene as mimetic catalase. Electrochim Acta, 2017, 258: 1435–1444

    Article  CAS  Google Scholar 

  65. Friedrich JF, Hidde G, Lippitz A, et al. Plasma bromination of graphene for covalent bonding of organic molecules. Plasma Chem Plasma Process, 2014, 34: 621–645

    Article  CAS  Google Scholar 

  66. Poh HL, Šimek P, Sofer Z, et al. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem Eur J, 2013, 19: 2655–2662

    Article  CAS  Google Scholar 

  67. Hasan M, Meiou W, Yulian L, et al. Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv, 2019, 9: 13527–13532

    Article  CAS  Google Scholar 

  68. Colomer JF, Marega R, Traboulsi H, et al. Microwave-assisted bromination of double-walled carbon nanotubes. Chem Mater, 2009, 21: 4747–4749

    Article  CAS  Google Scholar 

  69. Gao J, Bao F, Zhu Q, et al. Attaching hexylbenzene and poly(9,9-dihexylfluorene) to brominated graphene via Suzuki coupling reaction. Polym Chem, 2013, 4: 1672

    Article  CAS  Google Scholar 

  70. Bulusheva LG, Okotrub AV, Flahaut E, et al. Bromination of doublewalled carbon nanotubes. Chem Mater, 2012, 24: 2708–2715

    Article  CAS  Google Scholar 

  71. Wang X, Li X, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324: 768–771

    Article  CAS  Google Scholar 

  72. Lin YC, Lin CY, Chiu PW. Controllable graphene N-doping with ammonia plasma. Appl Phys Lett, 2010, 96: 133110

    Article  Google Scholar 

  73. Guo B, Liu Q, Chen E, et al. Controllable N-doping of graphene. Nano Lett, 2010, 10: 4975–4980

    Article  CAS  Google Scholar 

  74. Shao Y, Zhang S, Engelhard MH, et al. Nitrogen-doped graphene and its electrochemical applications. J Mater Chem, 2010, 20: 7491

    Article  CAS  Google Scholar 

  75. Wang Y, Shao Y, Matson DW, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 2010, 4: 1790–1798

    Article  CAS  Google Scholar 

  76. Wang DW, Gentle IR, Lu GQM. Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun, 2010, 12: 1423–1427

    Article  CAS  Google Scholar 

  77. Wu ZS, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5: 5463–5471

    Article  CAS  Google Scholar 

  78. Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  79. Qu L, Liu Y, Baek JB, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4: 1321–1326

    Article  CAS  Google Scholar 

  80. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal, 2012, 2: 781–794

    Article  CAS  Google Scholar 

  81. Bangert U, Pierce W, Kepaptsoglou DM, et al. Ion implantation of graphene—Toward IC compatible technologies. Nano Lett, 2013, 13: 4902–4907

    Article  CAS  Google Scholar 

  82. Susi T, Hardcastle TP, Hofsäss H, et al. Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Mater, 2017, 4: 021013

    Article  Google Scholar 

  83. Lin YC, Teng PY, Yeh CH, et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett, 2015, 15: 7408–7413

    Article  CAS  Google Scholar 

  84. Krasheninnikov AV, Lehtinen PO, Foster AS, et al. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett, 2009, 102: 126807

    Article  CAS  Google Scholar 

  85. Robertson AW, Montanari B, He K, et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett, 2013, 13: 1468–1475

    Article  CAS  Google Scholar 

  86. Ramasse QM, Seabourne CR, Kepaptsoglou DM, et al. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett, 2013, 13: 4989–4995

    Article  CAS  Google Scholar 

  87. Ullah S, Liu Y, Hasan M, et al. Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the sub-stitutionally doped graphene family. Nano Res, 2022, 15: 1310–1318

    Article  CAS  Google Scholar 

  88. He Z, He K, Robertson AW, et al. Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett, 2014, 14: 3766–3772

    Article  CAS  Google Scholar 

  89. Dyck O, Zhang L, Yoon M, et al. Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties. Carbon, 2021, 173: 205–214

    Article  CAS  Google Scholar 

  90. Girit CO, Meyer JC, Erni R, et al. Graphene at the edge: Stability and dynamics. Science, 2009, 323: 1705–1708

    Article  CAS  Google Scholar 

  91. Li J, Stephanopoulos MF, Xia Y. Introduction: Heterogeneous single-atom catalysis. Chem Rev, 2020, 120: 11699–11702

    Article  CAS  Google Scholar 

  92. Chen MS, Goodman DW. The structure of catalytically active gold on titania. Science, 2004, 306: 252–255

    Article  CAS  Google Scholar 

  93. Yang X, Liu Y, Ta HQ, et al. Single-atom catalytic growth of crystals using graphene as a case study. npj 2D Mater Appl, 2021, 5: 91

    Article  CAS  Google Scholar 

  94. Zhao J, Deng Q, Avdoshenko SM, et al. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc Natl Acad Sci USA, 2014, 111: 15641–15646

    Article  CAS  Google Scholar 

  95. Ta HQ, Zhao L, Yin W, et al. Single Cr atom catalytic growth of graphene. Nano Res, 2018, 11: 2405–2411

    Article  CAS  Google Scholar 

  96. Kano E, Hashimoto A, Takeguchi M. Opposite effects of Cu and Pt atoms on graphene edges. Appl Phys Express, 2017, 10: 025104

    Article  Google Scholar 

  97. Lee YH, Kim SG, Tománek D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys Rev Lett, 1997, 78: 2393–2396

    Article  CAS  Google Scholar 

  98. Yang X, Ta HQ, Hu H, et al. On the catalytic activity of Sn monomers and dimers at graphene edges and the synchronized edge dependence of diffusing atoms in Sn dimers. Adv Funct Mater, 2021, 31: 2104340

    Article  CAS  Google Scholar 

  99. Leuthner GT, Susi T, Mangler C, et al. Chemistry at graphene edges in the electron microscope. 2D Mater, 2021, 8: 035023

    Article  CAS  Google Scholar 

  100. Ta HQ, Bachmatiuk A, Warner JH, et al. Electron-driven metal oxide effusion and graphene gasification at room temperature. ACS Nano, 2016, 10: 6323–6330

    Article  CAS  Google Scholar 

  101. Ta HQ, Yang QX, Liu S, et al. In situ formation of free-standing single-atom-thick antiferromagnetic chromium membranes. Nano Lett, 2020, 20: 4354–4361

    Article  CAS  Google Scholar 

  102. Zhao J, Deng Q, Bachmatiuk A, et al. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science, 2014, 343: 1228–1232

    Article  CAS  Google Scholar 

  103. Wang X, Wang C, Chen C, et al. Free-standing monatomic thick two-dimensional gold. Nano Lett, 2019, 19: 4560–4566

    Article  CAS  Google Scholar 

  104. Zhao X, Dan J, Chen J, et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv Mater, 2018, 30: 1707281

    Article  Google Scholar 

  105. Yin K, Zhang YY, Zhou Y, et al. Unsupported single-atom-thick copper oxide monolayers. 2D Mater, 2017, 4: 011001

    Article  Google Scholar 

  106. Quang HT, Bachmatiuk A, Dianat A, et al. In situ observations of freestanding graphene-like mono- and bilayer ZnO membranes. ACS Nano, 2015, 9: 11408–11413

    Article  CAS  Google Scholar 

  107. Claeyssens F, Freeman CL, Allan NL, et al. Growth of ZnO thin films—Experiment and theory. J Mater Chem, 2005, 15: 139–148

    Article  CAS  Google Scholar 

  108. Meyerheim HL, Sander D, Popescu R, et al. Surfactant-mediated growth revisited. Phys Rev Lett, 2007, 99: 116101

    Article  CAS  Google Scholar 

  109. Susi T, Skákalová V, Mittelberger A, et al. Computational insights and the observation of SiC nanograin assembly: Towards 2D silicon carbide. Sci Rep, 2017, 7: 4399

    Article  Google Scholar 

  110. Lee J, Zhou W, Pennycook SJ, et al. Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore. Nat Commun, 2013, 4: 1650

    Article  Google Scholar 

  111. Lee J, Yang Z, Zhou W, et al. Stabilization of graphene nanopore. Proc Natl Acad Sci USA, 2014, 111: 7522–7526

    Article  CAS  Google Scholar 

  112. Dyck O, Kim S, Kalinin SV, et al. E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Res, 2018, 11: 6217–6226

    Article  CAS  Google Scholar 

  113. Dong C, Zhu W, Zhao S, et al. Evolution of Pt clusters on graphene induced by electron irradiation. J Appl Mech, 2013, 80: 040904

    Article  Google Scholar 

  114. Yang X, Ta HQ, Li W, et al. In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene. Nano Res, 2021, 14: 747–753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52071225 and 51676154) and Czech Republic under the ERDF program “Institute of Environmental Technology-Excellent Research” (CZ.02.1.01/0.0/0.0/16_019/0000853). Rümmeli MH and Fu L thank the Sino-German Research Institute for support (GZ 1400).

Author information

Authors and Affiliations

Authors

Contributions

Liu Y and Rümmeli MH contributed the central idea, and analyzed most of the data. Liu Y wrote the initial draft of the paper and revised the manuscript with support from all other authors. All authors contributed to the general discussion.

Corresponding author

Correspondence to Mark H. Rümmeli.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yu Liu is currently a postdoctoral in Professor Mark H. Rümmeli’s group at Soochow Institute for Energy and Materials Innovations (SIEMIs), Soochow University, China. Her research focuses on the characterization of 2D nanostructured materials using transmission electron microscopy.

Mark H. Rümmeli is a distinguished professor at SIEMIs, Soochow University, China, where his research group uses state-of-the-art transmission electron microscopy techniques to investigate novel 2D nanomaterials. He is also a professor at the Polish Academy of Sciences, Poland, and a guest professor at Leibniz Institute for Solid State and Materials Research Dresden (IFW-Dresden), Germany. He is a fellow of the Royal Society of Chemistry (UK), the Institute for Materials, Minerals, and Mining, and the Institute of Engineering and Technology (UK) and the Institute of Physics (UK).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ta, H.Q., Yang, X. et al. Novel nanostructures suspended in graphene vacancies, edges and holes. Sci. China Mater. 66, 35–50 (2023). https://doi.org/10.1007/s40843-022-2180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2180-5

Keywords

Navigation