Skip to main content
Log in

Active metasurfaces based on phase transition material vanadium dioxide

基于氧化钒的动态超表面

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Dynamic properties play a vital role in modern optical devices, including light detection and ranging systems, display devices, and digital cameras. Active metasurfaces provide an attractive scheme for the miniaturization and integration of dynamic optical systems compared with traditional bulk optical devices. Phase transition materials are great candidates for the design of active metasurfaces due to their high contrast refractive index and simple control characteristics. Here, we present a tunable metalens and switchable image coding metasurface in the near-infrared region through the control of the phase transition of vanadium oxide. By adjusting the phase transition of vanadium oxide, the focal intensity of the metalens is changed, and a switching effect with an intensity contrast of ∼12 times is demonstrated. In addition, the switchable imaging of two different numbers has been achieved in two different phase states. This work provides potential opportunities to realize active metasurfaces for imaging and encryption systems.

摘要

动态调控是现代光学器件中必不可少的特性, 在激光雷达系统、显示器件以及数码相机等设备中具有重要意义. 与传统的体光学器件相比, 动态超表面为实现小型化和集成化智能光学系统提供了一个极具吸引力的解决方案. 相变材料具有高的折射率对比度和易于操控的特性, 是设计动态超表面的理想材料. 本文通过操控氧化钒的相变, 在近红外区域设计实现了可调谐的超构透镜和可切换图像编码的超表面器件. 通过控制氧化钒的相变, 能够改变超透镜的聚焦强度, 实现强度对比约为12倍的开关聚焦效果. 此外, 利用氧化钒的相变还设计实现了任意两个不同数字图案的可切换成像. 本工作为实现动态成像和光学加密系统的可调谐超表面奠定了基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334: 333–337

    Article  CAS  Google Scholar 

  2. Chen HT, Taylor AJ, Yu N. A review of metasurfaces: Physics and applications. Rep Prog Phys, 2016, 79: 076401

    Article  Google Scholar 

  3. Hu J, Bandyopadhyay S, Liu Y, et al. A review on metasurface: From principle to smart metadevices. Front Phys, 2021, 8: 586087

    Article  Google Scholar 

  4. Sun S, He Q, Hao J, et al. Electromagnetic metasurfaces: Physics and applications. Adv Opt Photon, 2019, 11: 380–479

    Article  Google Scholar 

  5. Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1: 1600064

    Article  Google Scholar 

  6. Khorasaninejad M, Chen WT, Devlin RC, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190–1194

    Article  CAS  Google Scholar 

  7. Khorasaninejad M, Zhu AY, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett, 2016, 16: 7229–7234

    Article  CAS  Google Scholar 

  8. Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett, 2017, 17: 1819–1824

    Article  CAS  Google Scholar 

  9. Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett, 2012, 12: 6328–6333

    Article  CAS  Google Scholar 

  10. Ding F, Wang Z, He S, et al. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach. ACS Nano, 2015, 9: 4111–4119

    Article  CAS  Google Scholar 

  11. Deng Y, Wu C, Meng C, et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano, 2021, 15: 18532–18540

    Article  CAS  Google Scholar 

  12. Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett, 2014, 14: 1394–1399

    Article  CAS  Google Scholar 

  13. Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett, 2012, 12: 5750–5755

    Article  CAS  Google Scholar 

  14. Liu S, Noor A, Du LL, et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics, 2016, 3: 1968–1977

    Article  CAS  Google Scholar 

  15. Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun, 2013, 4: 2807

    Article  Google Scholar 

  16. Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotech, 2015, 10: 308–312

    Article  CAS  Google Scholar 

  17. Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun, 2013, 4: 2808

    Article  Google Scholar 

  18. Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotech, 2015, 10: 937–943

    Article  CAS  Google Scholar 

  19. Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater, 2014, 26: 5031–5036

    Article  CAS  Google Scholar 

  20. Kim J, Jeon D, Seong J, et al. Photonic encryption platform via dualband vectorial metaholograms in the ultraviolet and visible. ACS Nano, 2022, 16: 3546–3553

    Article  CAS  Google Scholar 

  21. Hu S, Du S, Li J, et al. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Lett, 2021, 21: 1792–1799

    Article  CAS  Google Scholar 

  22. Kong XT, Khan AA, Kidambi PR, et al. Graphene-based ultrathin flat lenses. ACS Photonics, 2015, 2: 200–207

    Article  CAS  Google Scholar 

  23. Kim TT, Kim H, Kenney M, et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv Opt Mater, 2018, 6: 1700507

    Article  Google Scholar 

  24. Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett, 2014, 14: 6526–6532

    Article  CAS  Google Scholar 

  25. Cai Z, Liu Y. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces. Adv Opt Mater, 2022, 10: 2102135

    Article  CAS  Google Scholar 

  26. Huang YW, Lee HWH, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett, 2016, 16: 5319–5325

    Article  CAS  Google Scholar 

  27. Kafaie Shirmanesh G, Sokhoyan R, Pala RA, et al. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett, 2018, 18: 2957–2963

    Article  CAS  Google Scholar 

  28. Park J, Kang JH, Kim SJ, et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett, 2017, 17: 407–413

    Article  CAS  Google Scholar 

  29. Sautter J, Staude I, Decker M, et al. Active tuning of all-dielectric metasurfaces. ACS Nano, 2015, 9: 4308–4315

    Article  CAS  Google Scholar 

  30. Bohn J, Bucher T, Chong KE, et al. Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces. Nano Lett, 2018, 18: 3461–3465

    Article  CAS  Google Scholar 

  31. Li SQ, Xu X, Maruthiyodan Veetil R, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 2019, 364: 1087–1090

    Article  CAS  Google Scholar 

  32. Tripathi A, John J, Kruk S, et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics, 2021, 8: 1206–1213

    Article  CAS  Google Scholar 

  33. Liu L, Kang L, Mayer TS, et al. Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun, 2016, 7: 13236

    Article  CAS  Google Scholar 

  34. Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Dynamic hybrid metasurfaces. Nano Lett, 2021, 21: 1238–1245

    Article  CAS  Google Scholar 

  35. Zhang DQ, Shu FZ, Jiao ZW, et al. Tunable wave plates based on phase-change metasurfaces. Opt Express, 2021, 29: 7494–7503

    Article  Google Scholar 

  36. Driscoll T, Kim HT, Chae BG, et al. Memory metamaterials. Science, 2009, 325: 1518–1521

    Article  CAS  Google Scholar 

  37. Dong K, Hong S, Deng Y, et al. A lithography-free and field-programmable photonic metacanvas. Adv Mater, 2018, 30: 1703878

    Article  Google Scholar 

  38. Wu PC, Pala RA, Kafaie Shirmanesh G, et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat Commun, 2019, 10: 3654

    Article  Google Scholar 

  39. Hashemi MRM, Yang SH, Wang T, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep, 2016, 6: 35439

    Article  CAS  Google Scholar 

  40. Park J, Jeong BG, Kim SI, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol, 2021, 16: 69–76

    Article  CAS  Google Scholar 

  41. Yu P, Li J, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Lett, 2021, 21: 6690–6695

    Article  CAS  Google Scholar 

  42. Liu X, Wang Q, Zhang X, et al. Thermally dependent dynamic metaholography using a vanadium dioxide integrated metasurface. Adv Opt Mater, 2019, 7: 1900175

    Article  Google Scholar 

  43. Choi C, Lee SY, Mun SE, et al. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv Opt Mater, 2019, 7: 1900171

    Article  Google Scholar 

  44. Wang Z, Dai C, Zhang J, et al. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv Funct Mater, 2021, 32: 2110022

    Article  Google Scholar 

  45. Shirmanesh GK, Sokhoyan R, Wu PC, et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 2020, 14: 6912–6920

    Article  CAS  Google Scholar 

  46. Shalaginov MY, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun, 2021, 12: 1225

    Article  CAS  Google Scholar 

  47. Xiong B, Xu Y, Wang J, et al. Realizing colorful holographic mimicry by metasurfaces. Adv Mater, 2021, 33: 2005864

    Article  CAS  Google Scholar 

  48. Jia ZY, Shu FZ, Gao YJ, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl, 2018, 9: 034009

    Article  Google Scholar 

  49. Shu FZ, Wang JN, Peng RW, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev, 2021, 15: 2100155

    Article  CAS  Google Scholar 

  50. Shu FZ, Yu FF, Peng RW, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater, 2018, 6: 1700939

    Article  Google Scholar 

  51. Jung C, Kim SJ, Jang J, et al. Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counter-feiting displays. Sci Adv, 2022, 8: eabm8598

    Article  Google Scholar 

  52. Klopfer E, Dagli S, Barton David I, et al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Lett, 2022, 22: 1703–1709

    Article  CAS  Google Scholar 

  53. Appavoo K, Haglund Richard F. J. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Lett, 2011, 11: 1025–1031

    Article  CAS  Google Scholar 

  54. Cueff S, John J, Zhang Z, et al. VO2 nanophotonics. APL Photonics, 2020, 5: 110901

    Article  CAS  Google Scholar 

  55. He J, Xie Z, Sun W, et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition. Plasmonics, 2016, 11: 1285–1290

    Article  CAS  Google Scholar 

  56. Fuster JM, Candelas P, Castiñeira-Ibáñez S, et al. Analysis of fresnel zone plates focusing dependence on operating frequency. Sensors, 2017, 17: 2809

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51872039 and 52021001), and the Science and Technology Program of Sichuan (M112018JY0025).

Author information

Authors and Affiliations

Authors

Contributions

Li Y conceived the idea and performed the numerical calculations. Li Y, Xie J, Deng L, and Peng B prepared the manuscript. All the authors discussed and analyzed the results.

Corresponding author

Correspondence to Bo Peng  (彭波).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yue Li received her BSc degree (2015) from the University of Electronic Science and Technology of China and is currently pursuing her PhD degree at the same university. Her current research interest mainly focuses on the design of optical metasurface devices.

Bo Peng received his BSc (Honors) degree from Lanzhou University in 2005 and obtained his PhD degree from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, in 2010. He completed his postdoctoral research in Singapore between 2010 and 2015. He is currently the Head of the Magneto-optical 2D Materials Group at the University of Electronic Science and Technology of China. His research focuses on 2D ferromagnetic materials toward spintronics and valleytronics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, J., Deng, L. et al. Active metasurfaces based on phase transition material vanadium dioxide. Sci. China Mater. 66, 284–290 (2023). https://doi.org/10.1007/s40843-022-2151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2151-4

Keywords

Navigation