Skip to main content
Log in

Bi-functional Cu-TiO2/CuO photocatalyst for large-scale synergistic treatment of waste sewage containing organics and heavy metal ions

双功能Cu-TiO2/CuO光催化剂用于大规模协同处理含有机污染物和重金属离子的废水

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Numerous photocatalysts have been prepared for the photocatalysis of either organic pollutant degradation or Cr(VI) reduction. However, most of the inorganic and organic pollutants usually co-exist in industrial sewage. Simultaneous elimination of mixed inorganic and organic pollutants remains highly challenging. Herein, we report bi-functional Cu-TiO2/CuO photocatalysts by the in-situ doping and heterostructure engineering strategies for large-scale and highly enhanced synergistic photocatalytic elimination of organic pollutants and transitional metallic ions from waste sewage in one shot. Specifically, this bi-functional photocatalyst displays about 2.35 and 3.84 times higher photocatalytic Rhodamine B (RhB) degradation and Cr(VI) reduction rates in the solution with co-existing RhB and Cr(VI) than that in the single RhB or Cr(VI) pollutant solution, respectively. A highly boosted synergetic effect between photocatalytic dye molecule degradation and Cr(VI) reduction is revealed. The bi-functional photocatalyst also displays extraordinary activity and stability in large-scale photocatalytic elimination of mixed pollutants. Moreover, theoretical calculations demonstrate that Cu doping and heterostructure engineering give rise to the narrowed bandgap for enhanced light harvesting, the increased density of states for high charge carrier density, the delocalized electron for fast photoinduced charge carrier separation, and the profitable charge transfer between TiO2 and CuO, thus bringing about the efficient synergetic photocatalysis. The bi-functional photocatalyst concept reported in this study opens a new avenue to construct bi-functional photocatalysts for solar-to-fuel conversion and large-scale industrial waste water treatment and river purification.

摘要

大多数所制备的光催化剂通常只用于单一地降解有机污染物或还原Cr(VI)的光催化. 然而, 无机和有机污染物通常共存于工业污水中.同时消除混合的无机和有机污染物仍然存在着巨大的挑战. 在本文中,我们通过原位掺杂和异质结工程策略, 制备出了新型的双功能Cu-TiO2/CuO光催化剂用于大规模高效协同光催化消除废水中的有机污染物和过渡金属离子. 具体而言, 这种双功能光催化剂在RhB和Cr(VI)共存溶液中的光催化RhB降解率和Cr(VI)还原率分别是在单一RhB或Cr(VI)污染物溶液中对应值的2.35和3.84倍. 光催化染料分子降解和Cr(VI)还原之间存在显著增强的协同效应. 此外, 该双功能光催化剂在大规模光催化消除混合污染物方面也表现出较好的活性和稳定性. 理论计算表明, 铜掺杂和异质结工程促进了高效的光吸收、增高的载流子密度以及快速的光生载流子转移, 从而产生高效的协同光催化作用.这种双功能光催化剂的概念为大规模工业废水处理和净化开辟了新途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding Y, Maitra S, Wang C, et al. Vacancy defect engineering in semiconductors for solar light-driven environmental remediation and sustainable energy production. Interdiscip Mater, 2022, 1: 213–255

    Article  Google Scholar 

  2. Ding Y, Huang L, Barakat T, et al. A novel 3DOM TiO2 based multifunctional photocatalytic and catalytic platform for energy regeneration and pollutants degradation. Adv Mater Interfaces, 2021, 8: 2001879

    Article  CAS  Google Scholar 

  3. Zu M, Zhang S, Liu C, et al. Portable wastewater treatment system based on synergistic photocatalytic and persulphate degradation under visible light. Sci China Mater, 2021, 64: 1952–1963

    Article  CAS  Google Scholar 

  4. Xu M, Chen Y, Qin J, et al. Unveiling the role of defects on oxygen activation and photodegradation of organic pollutants. Environ Sci Technol, 2018, 52: 13879–13886

    Article  CAS  Google Scholar 

  5. Chen LH, Sun MH, Wang Z, et al. Hierarchically structured zeolites: From design to application. Chem Rev, 2020, 120: 11194–11294

    Article  CAS  Google Scholar 

  6. Yang XY, Chen LH, Li Y, et al. Hierarchically porous materials: Synthesis strategies and structure design. Chem Soc Rev, 2017, 46: 481–558

    Article  CAS  Google Scholar 

  7. Hou H, Zeng X, Zhang X. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci China Mater, 2020, 63: 2119–2152

    Article  CAS  Google Scholar 

  8. Fan X, Zhang L, Li M, et al. a-Ferrous oxalate dihydrate: A simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations. Sci China Mater, 2016, 59: 574–580

    Article  CAS  Google Scholar 

  9. Zou Y, Wang X, Khan A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ Sci Technol, 2016, 50: 7290–7304

    Article  CAS  Google Scholar 

  10. Zhao Y, Tian G, Duan X, et al. Environmental applications of diatomite minerals in removing heavy metals from water. Ind Eng Chem Res, 2019, 58: 11638–11652

    Article  CAS  Google Scholar 

  11. Zai J, Cao F, Liang N, et al. Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance. J Hazard Mater, 2017, 321: 464–472

    Article  CAS  Google Scholar 

  12. Xue C, Zhang T, Ding S, et al. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity. ACS Appl Mater Interfaces, 2017, 9: 16091–16102

    Article  CAS  Google Scholar 

  13. Padhi D, Pradhan GK, Parida KM, et al. Facile fabrication of Gd(OH)3 nanorod/RGO composite: Synthesis, characterisation and photocatalytic reduction of Cr(VI). Chem Eng J, 2014, 255: 78–88

    Article  CAS  Google Scholar 

  14. Feng Y, Li H, Ling L, et al. Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field. Environ Sci Technol, 2018, 52: 7842–7848

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang Q, Lu J, et al. Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes. Chemosphere, 2016, 162: 55–63

    Article  CAS  Google Scholar 

  16. Guo S, Yang W, You L, et al. Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes. Chem Eng J, 2020, 393: 124758

    Article  CAS  Google Scholar 

  17. Zheng R, Li J, Zhu R, et al. Enhanced Cr(VI) reduction on natural chalcopyrite mineral modulated by degradation intermediates of RhB. J Hazard Mater, 2022, 423: 127206

    Article  CAS  Google Scholar 

  18. Sakaguchi N, Miyamoto R, Giamello E, et al. Evaluation of coexistent metal ions with TiO2: An EPR approach. Res Chem Intermed, 2018, 44: 4563–4575

    Article  Google Scholar 

  19. Zhao H, Li CF, Hu ZY, et al. Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. J Colloid Interface Sci, 2021, 604: 131–140

    Article  CAS  Google Scholar 

  20. Zhao H, Hu Z, Liu J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy, 2018, 47: 266–274

    Article  CAS  Google Scholar 

  21. Choudhury B, Choudhury A, Borah D. Interplay of dopants and defects in making Cu doped TiO2 nanoparticle a ferromagnetic semiconductor. J Alloys Compd, 2015, 646: 692–698

    Article  CAS  Google Scholar 

  22. Zalfani M, van der Schueren B, Mahdouani M, et al. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Appl Catal B-Environ, 2016, 199: 187–198

    Article  CAS  Google Scholar 

  23. Jin J, Wang C, Ren XN, et al. Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy, 2017, 38: 118–126

    Article  CAS  Google Scholar 

  24. Choudhury B, Dey M, Choudhury A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett, 2013, 3: 25

    Article  Google Scholar 

  25. Yang Y, Yin LC, Gong Y, et al. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv Mater, 2018, 30: 1704479

    Article  Google Scholar 

  26. Qi D, Lu L, Xi Z, et al. Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B-Environ, 2014, 160–161: 621–628

    Article  Google Scholar 

  27. Hao R, Wang G, Tang H, et al. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B-Environ, 2016, 187: 47–58

    Article  CAS  Google Scholar 

  28. Xu J, Wang W, Sun S, et al. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2. Appl Catal B-Environ, 2012, 111–112: 126–132

    Article  Google Scholar 

  29. Wei Z, Liu D, Wei W, et al. Ultrathin TiO2 (B) nanosheets as the inductive agent for transfrering H2O2 into superoxide radicals. ACS Appl Mater Interfaces, 2017, 9: 15533–15540

    Article  CAS  Google Scholar 

  30. Shi Q, Ping G, Wang X, et al. CuO/TiO2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate. J Mater Chem A, 2019, 7: 2253–2260

    Article  CAS  Google Scholar 

  31. Wang S, Chen P, Bai Y, et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater, 2018, 30: 1800486

    Article  Google Scholar 

  32. Feng C, Tang L, Deng Y, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv Funct Mater, 2022, 30: 2001922

    Article  Google Scholar 

  33. Ding Y, Maitra S, Wang C, et al. Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. J Energy Chem, 2022, 70: 236–247

    Article  CAS  Google Scholar 

  34. Wang S, Pan L, Song JJ, et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc, 2015, 137: 2975–2983

    Article  CAS  Google Scholar 

  35. Wang D, Liu ZP, Yang WM. Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: A DFT study. ACS Catal, 2018, 8: 7270–7278

    Article  CAS  Google Scholar 

  36. Hou H, Shang M, Gao F, et al. Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl Mater Interfaces, 2016, 8: 20128–20137

    Article  CAS  Google Scholar 

  37. Wei F, Liu Y, Zhao H, et al. Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale, 2018, 10: 4515–4522

    Article  CAS  Google Scholar 

  38. Xia P, Zhu B, Cheng B, et al. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain Chem Eng, 2018, 6: 965–973

    Article  CAS  Google Scholar 

  39. Ding Y, Maitra S, Esteban DA, et al. Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in porous carbon nitride. Cell Rep Phys Sci, 2022, 3: 100874

    Article  CAS  Google Scholar 

  40. Wan S, Xu J, Cao S, et al. Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip Mater, 2022, 1: 294–308

    Article  Google Scholar 

  41. Wang C, Weng B, Keshavarz M, et al. Photothermal Suzuki coupling over a metal halide perovskite/Pd nanocube composite catalyst. ACS Appl Mater Interfaces, 2022, 14: 17185–17194

    Article  CAS  Google Scholar 

  42. Zhao H, Jin Q, Khan MA, et al. Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem Catal, 2022, 2: 1720–1733

    Article  Google Scholar 

  43. Zhao H, Zalfani M, Li CF, et al. Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis. J Colloid Interface Sci, 2019, 539: 585–597

    Article  CAS  Google Scholar 

  44. Lu Y, Cheng X, Tian G, et al. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy, 2018, 47: 8–17

    Article  CAS  Google Scholar 

  45. Zhao H, Li CF, Liu LY, et al. n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J Colloid Interface Sci, 2021, 585: 694–704

    Article  CAS  Google Scholar 

  46. Yang JX, Yu WB, Li CF, et al. PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chem Eng J, 2021, 420: 129695

    Article  CAS  Google Scholar 

  47. Chen LH, Li Y, Su BL. Hierarchy in materials for maximized efficiency. Natl Sci Rev, 2020, 7: 1626–1630

    Article  CAS  Google Scholar 

  48. Zhao H, Liu J, Li C, et al. Meso-microporous nanosheet-constructed 3DOM perovskites for remarkable photocatalytic hydrogen production. Adv Funct Mater, 2022, 32: 2112831

    Article  CAS  Google Scholar 

  49. Wang YY, Chen YX, Barakat T, et al. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. J Energy Chem, 2022, 66: 529–559

    Article  CAS  Google Scholar 

  50. Wu L, Li Y, Fu Z, et al. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. Natl Sci Rev, 2020, 7: 1667–1701

    Article  CAS  Google Scholar 

  51. Ding Y, Maitra S, Halder S, et al. Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production. Matter, 2022, 5: 2119–2167

    Article  CAS  Google Scholar 

  52. Wang C, Huang H, Weng B, et al. Planar heterojunction boosts solar-driven photocatalytic performance and stability of halide perovskite solar photocatalyst cell. Appl Catal B-Environ, 2022, 301: 120760

    Article  CAS  Google Scholar 

  53. Maitra S, Pal S, Maitra T, et al. Solvothermal etching-assisted phase and morphology tailoring in highly porous CuFe2O4 nanoflake photocathodes for solar water splitting. Energy Fuels, 2021, 35: 14087–14100

    Article  CAS  Google Scholar 

  54. Maitra S, Halder S, Maitra T, et al. Superior light absorbing CdS/vanadium sulphide nanowalls@TiO2 nanorod ternary heterojunction photoanodes for solar water splitting. New J Chem, 2021, 45: 7353–7367

    Article  CAS  Google Scholar 

  55. Li Y, Zhang D, Qiao W, et al. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem Synth, 2022, 2: 9

    Article  Google Scholar 

  56. Wang H, Wang L, Luo Q, et al. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons. Chem Synth, 2022, 2: 2

    Article  Google Scholar 

  57. Roy K, Maitra S, Ghosh D, et al. 2D-heterostructure assisted activation of MoS2 basal plane for enhanced photoelectrochemical hydrogen evolution reaction. Chem Eng J, 2022, 435: 134963

    Article  CAS  Google Scholar 

  58. Ghosh D, Roy K, Maitra S, et al. Unravelling Rashba-Dresselhaus splitting assisted magneto-photoelectrochemical water splitting in asymmetric MoSSe-GaN heterostructures. J Phys Chem Lett, 2022, 13: 1234–1240

    Article  CAS  Google Scholar 

  59. Liu J, Guo YH, Hu ZY, et al. Slow photon-enhanced heterojunction accelerates photocatalytic hydrogen evolution reaction to unprecedented rates. CCS Chem, 2022,: 1–13

  60. Zhao H, Liu P, Wu X, et al. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Appl Catal B-Environ, 2021, 291: 120055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ding Y thanks the financial support from the China Scholarship Council (201808310127). Chen LH acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work was financially supported by the Foundation of Natural Science (61905159), the National Natural Science Foundation of China (U1663225) Program for Changjiang Scholars and Innovative Research Team (IRT_15R22), and the project “DepollutAir” of Interreg V France-Wallonie-Vlaanderen.

Author information

Authors and Affiliations

Authors

Contributions

Ding Y carried out all experiments and wrote the paper; Maitra S and Roy S conducted the DFT calculations; Wang C and Zheng R helped with the characterizations of photoluminescence, photoluminescence lifetime and EPR spectra; Chen LH and Barakat T guided the experiments, discussed the results and revised the paper; Su BL established the research direction, conceived the project, provided the scientific guidance and project realization ideas, revised and finalized the paper.

Corresponding authors

Correspondence to Li-Hua Chen  (陈丽华) or Bao-Lian Su  (苏宝连).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Yang Ding received his MSc degree from the College of Chemistry and Materials Science, Shanghai Normal University in 2018. He is currently a PhD student in the Laboratory of Inorganic Materials Chemistry (CMI) of the University of Namur under the supervision of Prof. Bao-Lian Su. His research interests include the synthesis and characterization of porous materials, photocatalytic pollutant elimination and sustainable energy production.

Li-Hua Chen obtained his PhD degrees, one in inorganic chemistry from Jilin University, China (2009), and another in inorganic materials chemistry from the University of Namur, FUNDP, Belgium (2011). In 2011–2012, he held a project-researcher position at the University of Namur with Professor Bao-Lian Su, working on hierarchically porous zeolites. He is currently a full professor at Wuhan University of Technology, China. His research is aimed at new porous materials with designed hierarchically porosity.

Bao-Lian Su founded the CMI at the University of Namur, Belgium in 1995. He is full professor, Member of the European Academy of Sciences, Member of the Royal Academy of Belgium, Fellow of the Royal of Society of Chemistry, UK and Life Member of Clare Hall College, University of Cambridge. He is also a strategy scientist at Wuhan University of Technology, China. His research fields include the synthesis, the property study and the molecular engineering of organized, hierarchically porous materials and bio-organisms for artificial photosynthesis, (photo)catalysis, energy conversion and storage, biotechnology, cell therapy and biomedical applications.

Supplementary Information

40843_2022_2148_MOESM1_ESM.pdf

Bi-functional Cu-TiO2/CuO photocatalyst for large-scale synergistic treatment of waste sewage containing organics and heavy metal ions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Maitra, S., Wang, C. et al. Bi-functional Cu-TiO2/CuO photocatalyst for large-scale synergistic treatment of waste sewage containing organics and heavy metal ions. Sci. China Mater. 66, 179–192 (2023). https://doi.org/10.1007/s40843-022-2148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2148-4

Keywords

Navigation