Skip to main content

Advertisement

Log in

Enhanced photo-reduction performance of CuInS2 for aqueous Cr(VI) via facile combining with Bi2S3: a direct Z-scheme mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recombination and redox energy declination of photo-induced carriers in their transfer over photocatalysts cause loss of efficiency in photodegradation of contaminants. Constructing a Z-scheme transfer mechanism of them is considered as a promising approach to boost the photocatalytic activity. Herein, direct Z-scheme CuInS2/Bi2S3 heterojunctions were successfully fabricated by a facile one-step hydrothermal method. The obtained photocatalysts were systematically characterized and used for the photo-reduction of aqueous Cr(VI) under visible light irradiation. The results showed that the optimal composite with a 24 wt% Bi2S3 content exhibited a superior photocatalytic activity, which was 4.12 times greater than that of pristine CuInS2, and subsequent cycling experiments demonstrated its excellent photocatalytic stability. Besides, the direct Z-scheme heterostructure of CuInS2/Bi2S3 was corroborated by trapping experiments and XPS measurement, which effectively facilitated the spatial charge separation and kept the photo-induced electrons with a strong reducing ability in the conduction band of CuInS2, thus resulting in its outstanding photocatalytic performance towards the reduction of Cr(VI). This study provides a feasible strategy to improve the photoreduction performance of CuInS2-based composites for Cr(VI)-containing wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this work are available from the corresponding author upon reasonable request.

References

  1. X.H. Yi, S.Q. Ma, X.D. Du, C. Zhao, H. Fu, P. Wang, C.C. Wang, The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light. Chem. Eng. J. 375, 121944 (2019)

    Article  CAS  Google Scholar 

  2. Y.D. Guo, C.X. Li, Z.H. Gong, Y.P. Guo, X.G. Wang, B. Gao, W.J. Qin, G.G. Wang, Photocatalytic decontamination of tetracycline and Cr(VI) by a novel α-FeOOH/FeS2 photocatalyst: one-pot hydrothermal synthesis and Z-scheme reaction mechanism insight. J. Hazard. Mater. 397, 122580 (2020)

    Article  CAS  Google Scholar 

  3. M. Ye, W. Wei, L.H. Zheng, Y.Z. Liu, D.W. Wu, X.Y. Gu, A. Wei, Enhanced visible light photoreduction of aqueous Cr(VI) by Ag/Bi4O7/g-C3N4 nanosheets ternary metal/non-metal Z-scheme heterojunction. J. Hazard. Mater. 365, 674–683 (2019)

    Article  CAS  Google Scholar 

  4. I. Heidmann, W. Calmano, Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep. Purif. Technol. 61, 15–21 (2008)

    Article  CAS  Google Scholar 

  5. X.P. Wu, L. Cheng, C.S. Song, Y.Z. Zhang, X.J. Shi, X.Y. Li, P. Lin, S.L. Wang, P. Wang, L.B. Xu, L. Jin, C. Cui, Constructing carbon-coated Fe3O4 hierarchical microstructures with a porous structure and their excellent Cr(VI) ion removal properties. J. Mater. Sci. 32, 20844–20855 (2021)

    CAS  Google Scholar 

  6. Z.C. Shao, C. Huang, Q. Wu, Y.J. Zhao, W.J. Xu, Y.Y. Liu, J. Dang, H.W. Hou, Ion exchange collaborating coordination substitution: more efficient Cr(VI) removal performance of a water-stable CuII-MOF material. J. Hazard. Mater. 378, 120719 (2019)

    Article  CAS  Google Scholar 

  7. B. Jiang, S.S. Xin, L. Gao, S.Y. Luo, J.L. Xue, M.B. Wu, Dramatically enhanced aerobic Cr(VI) reduction with scrap zero-valent aluminum induced by oxalate. Chem. Eng. J. 308, 588–596 (2017)

    Article  CAS  Google Scholar 

  8. C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Res. 36, 4870–4876 (2002)

    Article  CAS  Google Scholar 

  9. X. Zhang, F.Y. Tian, L.Y. Qiu, M.Y. Gao, W.W. Yang, Y.Q. Liu, Y.S. Yu, Z-Scheme Mo2C/MoS2/In2S3 dual-heterojunctions for the photocatalytic reduction of Cr(VI). J. Mater. Chem. A 9, 10297–10303 (2021)

    Article  CAS  Google Scholar 

  10. X. Wei, C.C. Wang, Y. Li, P. Wang, Q. Wei, The Z-scheme NH2-UiO-66/PTCDA composite for enhanced photocatalytic Cr(VI) reduction under low-power LED visible light. Chemosphere 280, 130734 (2021)

    Article  CAS  Google Scholar 

  11. F.Y. Xu, J.J. Zhang, B.C. Zhu, J.G. Yu, J.S. Xu, CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B 230, 194–202 (2018)

    Article  CAS  Google Scholar 

  12. C. Ye, M.D. Regulacio, S.H. Lim, S. Li, Q.H. Xu, M.Y. Han, Alloyed ZnS-CuInS2 semiconductor nanorods and their nanoscale heterostructures for visible-light-driven photocatalytic hydrogen generation. Chem. Eur. J. 21, 9514–9519 (2015)

    Article  CAS  Google Scholar 

  13. W.H. Ye, J.S. Hu, X.F. Hu, W.H. Zhang, X.G. Ma, H.H. Wang, Rational construction of Z-Scheme CuInS2/Au/g-C3N4 heterostructure: experimental results and theoretical calculation. ChemCatChem 11, 6372–6383 (2019)

    Article  CAS  Google Scholar 

  14. H.Q. Tang, Y.H. Deng, H. Zou, Y.W. Tan, Y. Xiang, Y.F. Xu, W. Wu, Y. Zhou, Synthesis of Z-Scheme CuInS2@BiOBr heterojunction composite with visible-light activity. ChemSelect 5, 8258–8264 (2020)

    CAS  Google Scholar 

  15. X.X. Li, K.Y. Xie, L. Song, M.J. Zhao, Z.P. Zhang, Enhanced photocarrier separation in hierarchical graphitic-C3N4-Supported CuInS2 for noble-metal-free Z-scheme photocatalytic water Splitting. ACS Appl. Mater. Interfaces 9, 24577–24583 (2017)

    Article  CAS  Google Scholar 

  16. Q.Y. Zhao, Z.F. Liu, J.W. Li, W.G. Yan, J. Ya, X.F. Wu, Piezoelectric polarization assisted WO3/CdS photoanode improved carrier separation efficiency via CdS phase regulation. Int. J. Hydrog. Energy 46, 36113–36123 (2021)

    Article  CAS  Google Scholar 

  17. S. Kaowphong, W. Choklap, A. Chachvalvutikul, N. Chandet, A novel CuInS2/m-BiVO4 p-n heterojunction photocatalyst with enhanced visible-light photocatalytic activity. Colloids Surf. A 579, 123639 (2019)

    Article  CAS  Google Scholar 

  18. X.G. Zheng, Y.T. Mao, J. Wen, X.J. Fu, X.H. Liu, CuInS2/Mg(OH)2 nanosheets for the enhanced visible-light photocatalytic degradation of tetracycline. Nanomaterials 9, 1567 (2019)

    Article  CAS  Google Scholar 

  19. Y.W. Yang, W.X. Que, X.Y. Zhang, Y.L. Xing, X.T. Yin, Y.P. Du, Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. J. Hazard. Mater. 317, 430–439 (2016)

    Article  CAS  Google Scholar 

  20. J.X. Low, C.J. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, A review of direct Z-scheme photocatalysts. Small Methods 1, 1–21 (2017)

    Article  Google Scholar 

  21. Q.L. Xu, L.Y. Zhang, J.G. Yu, S. Wageh, A.A. Al-ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)

    Article  CAS  Google Scholar 

  22. F. Deng, X.Y. Lu, Y.B. Luo, J. Wang, W.J. Che, R.J. Yang, X.B. Luo, S.L. Luo, D.D. Dionysiou, Novel visible-light-driven direct Z-scheme CdS/CuInS2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction. Chem. Eng. J. 361, 1451–1461 (2019)

    Article  CAS  Google Scholar 

  23. F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 210, 608–615 (2019)

    Article  CAS  Google Scholar 

  24. S.V.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, In situ fabrication of the Bi2O3–V2O5 hybrid embedded with graphitic carbon nitride nanosheets: oxygen vacancies mediated enhanced visible-light–driven photocatalytic degradation of organic pollutants and hydrogen evolution. Appl. Surf. Sci. 447, 740–756 (2018)

    Article  CAS  Google Scholar 

  25. B.S. Goud, G. Koyyada, J.H. Jung, G.R. Reddy, J. Shim, N.D. Nam, S.V.P. Vattikuti, Surface oxygen vacancy facilitated Z-scheme MoS2/Bi2O3 heterojunction for enhanced visible-light driven photocatalysis-pollutant degradation and hydrogen production. Int. J. Hydrog. Energy 45, 18961–18975 (2020)

    Article  CAS  Google Scholar 

  26. L.X. Li, H.J. Gao, Z. Yi, S.F. Wang, X.W. Wu, R.S. Li, H. Yang, Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures. Colloids Surf. A 644, 128758 (2022)

    Article  CAS  Google Scholar 

  27. L.X. Li, X.F. Sun, T. Xian, H.J. Gao, S.F. Wang, Z. Yi, X.W. Wu, H. Yang, Template-free synthesis of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic application. Phys. Chem. Chem. Phys. 24, 8279–8295 (2022)

    Article  CAS  Google Scholar 

  28. X.Y. Lian, J.G. Zhang, Y. Zhan, Y.P. Zhang, S.L. Yang, Z. Chen, Y.Y. Dong, W.P. Fang, X.D. Yi, Engineering BiVO4@Bi2S3 heterojunction by cosharing bismuth atoms toward boosted photocatalytic Cr(VI) reduction. J. Hazard. Mater. 406, 124705 (2021)

    Article  CAS  Google Scholar 

  29. Z.M. He, Y.M. Xia, J.B. Su, B. Tang, Fabrication of magnetically separable NiFe2O4/Bi24O31Br10 nanocomposites and excellent photocatalytic performance under visible light irradiation. Opt. Mater. 88, 195–203 (2019)

    Article  CAS  Google Scholar 

  30. T.T. Cheng, H.J. Gao, G.R. Liu, Z.S. Pu, S.F. Wang, Z. Yi, X.W. Wu, H. Yang, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids Surf. A 633, 127918 (2022)

    Article  CAS  Google Scholar 

  31. F.J. Chen, Y.L. Cao, D.Z. Jia, Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J. Colloid Interface Sci. 404, 110–116 (2013)

    Article  CAS  Google Scholar 

  32. Z.Q. Liu, W.Y. Huang, Y.M. Zhang, Y.X. Tong, Facile hydrothermal synthesis of Bi2S3 spheres and CuS/Bi2S3 composites nanostructures with enhanced visible-light photocatalytic performances. CrystEngComm 14, 8261–8267 (2012)

    Article  CAS  Google Scholar 

  33. R. Zhang, Y. Li, W.Y. Zhang, Y.T. Sheng, M. Wang, J.M. Liu, Y. Liu, C. Zhao, K.L. Zeng, Fabrication of Cu2O/Bi2S3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline. J. Mol. Struct. 1229, 129581 (2021)

    Article  CAS  Google Scholar 

  34. X.F. Fu, H.P. Yang, H.H. Sun, G.H. Lu, J.M. Wu, The multiple roles of ethylenediamine modification at TiO2/activated carbon in determining adsorption and visible-light-driven photoreduction of aqueous Cr(VI). J. Alloys Compd. 662, 165–172 (2016)

    Article  CAS  Google Scholar 

  35. X.Y. Lu, W.J. Che, X.F. Hu, Y. Wang, A.T. Zhang, F. Deng, S.L. Luo, D.D. Dionysiou, The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem. Eng. J. 356, 819–829 (2019)

    Article  CAS  Google Scholar 

  36. H.J. Yu, J. Huang, H. Zhang, Q.F. Zhao, X.H. Zhong, Nanostructure and charge transfer in Bi2S3-TiO2 heterostructures. Nanotechnology 25, 215702 (2014)

    Article  Google Scholar 

  37. D. Hou, F. Tang, B. Ma, M. Deng, X.Q. Qiao, Y.L. Liu, D.S. Li, Bi4O5I2 flower/Bi2S3 nanorod heterojunctions for significantly enhanced photocatalytic performance. CrystEngComm 21, 4158–4168 (2019)

    Article  CAS  Google Scholar 

  38. H.C. He, S.P. Berglund, P. Xiao, W.D. Chemelewski, Y.H. Zhang, C.B. Mullins, Nanostructured Bi2S3-WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. J. Mater. Chem. A 1, 12826–12834 (2013)

    Article  CAS  Google Scholar 

  39. D.S. Lei, J.Q. Xue, Q. Bi, C.B. Tang, L. Zhang, 3D/2D direct Z-scheme photocatalyst Zn2SnO4/CdS for simultaneous removal of Cr(VI) and organic pollutant. Appl. Surf. Sci. 517, 146030 (2020)

    Article  CAS  Google Scholar 

  40. A. Das, M. Patra, M.P. Kumar, M. Bhagavathiachari, R.G. Nair, Role of type II heterojunction in ZnO-In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport. Mater. Chem. Phys. 263, 124431 (2021)

    Article  CAS  Google Scholar 

  41. Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater. Lett. 184, 148–151 (2016)

    Article  CAS  Google Scholar 

  42. L.L. Ai, L.X. Wang, M.J. Xu, S. Zhang, N.N. Guo, D.Z. Jia, L.X. Jia, Defective Bi333(Bi6S9)Br/Bi2S3 heterostructure nanorods: boosting the activity for efficient visible-light photocatalytic Cr(VI) reduction. Appl. Catal. B 284, 119730 (2021)

    Article  CAS  Google Scholar 

  43. Y.M. Xia, S.Q. Zhu, X.F. Fu, Z.Y. Huang, J.B. Su, Z.M. He, X.L. Liu, Y.R. Zhang, In situ loading of Ag2S particle on Nb2O5 sheets for synergistically enhanced photocatalytic decontamination of methylene blue. J. Mater. Sci. 33, 2125–2137 (2022)

    CAS  Google Scholar 

  44. Y.J. Yuan, D.Q. Chen, Y.W. Huang, Z.T. Yu, J.S. Zhong, T.T. Chen, W.G. Tu, Z.J. Guan, D.P. Cao, Z.G. Zou, MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. ChemSusChem 9, 1003–1009 (2016)

    Article  CAS  Google Scholar 

  45. L.J. Di, Y.S. Gao, T. Xian, X.F. Sun, H.Q. Li, H. Yang, Construction of an efficient Z-scheme CuS/BiOBr heterojunction photocatalysts for dye degradation and Cr(VI) reduction. J. Mater. Sci. 33, 16521–16537 (2022)

    CAS  Google Scholar 

  46. Q.W. Liang, S. Ploychompoo, J.D. Chen, T.T. Zhou, H.J. Luo, Simultaneous Cr(VI) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light. Chem. Eng. J. 384, 123256 (2020)

    Article  CAS  Google Scholar 

  47. C.S. Xing, Z.D. Wu, D.L. Jiang, M. Chen, Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J. Colloid Interface Sci. 433, 9–15 (2014)

    Article  CAS  Google Scholar 

  48. D.C. Hu, Y.Y. Xu, S.Y. Zhang, J.B. Tu, M. Li, L.H. Zhi, J.C. Liu, Fabrication of redox-mediator-free Z-scheme CdS/NiCo2O4 photocatalysts with enhanced visible-light driven photocatalytic activity in Cr(VI) reduction and antibiotics degradation. Colloids Surf. A 608, 125582 (2021)

    Article  CAS  Google Scholar 

  49. L.X. Li, H.J. Gao, G.R. Liu, S.F. Wang, Z. Yi, X.W. Wu, H. Yang, Synthesis of carnation flower-like Bi2O2CO3 photocatalyst and its promising application for photoreduction of Cr(VI). Adv. Powder Technol. 33, 103481 (2022)

    Article  CAS  Google Scholar 

  50. Z.M. He, H.P. Yang, J. Sunarso, N.H. Wong, Z.Y. Huang, Y.M. Xia, Y. Wang, J.B. Su, L.N. Wang, L. Kang, Novel scheme towards interfacial charge transfer between ZnIn2S4 and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere 303, 134973 (2022)

    Article  CAS  Google Scholar 

  51. Z.M. He, M.S. Siddique, H.P. Yang, Y.M. Xia, J.B. Su, B. Tang, L.N. Wang, L. Kang, Z.Y. Huang, Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. J. Clean. Prod. 339, 130634 (2022)

    Article  CAS  Google Scholar 

  52. R.G. Weng, F. Tian, Z.D. Yu, J.C. Ma, Y.C. Lv, B.D. Xi, Efficient mineralization of TBBPA via an integrated photocatalytic reduction/oxidation process mediated by MoS2/SnIn4S8 photocatalyst. Chemosphere 285, 131542 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Specialized Research Fund for the Doctoral Program of Jiangsu University of Technology (KYY16018) and the Natural Science Foundation of Jiangsu Province (BK20181043).

Funding

This work was supported by the Specialized Research Fund for the Doctoral Program of Jiangsu University of Technology (Grant No. KYY16018) and Basic Research Program of Jiangsu Province (Grant No. BK20181043).

Author information

Authors and Affiliations

Authors

Contributions

XF: Formal analysis, Investigation, Writing-original draft, Writing-review & editing, Data collection, Validation. JT: Formal analysis, Methodology, Validation. ZH: Formal analysis, Conceptualization, Writing-review & editing, Supervision. YG: Resources, Software, Formal analysis. YX: Formal analysis, Writing-review & editing. ZZ: Resources, Formal analysis. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Xiaofei Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 44 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Tao, J., He, Z. et al. Enhanced photo-reduction performance of CuInS2 for aqueous Cr(VI) via facile combining with Bi2S3: a direct Z-scheme mechanism. J Mater Sci: Mater Electron 33, 24663–24676 (2022). https://doi.org/10.1007/s10854-022-09175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09175-9

Navigation