Skip to main content
Log in

Achieving mechano-upconversion-downshifting-afterglow multimodal luminescence in a lanthanide-doped LaCaAl3O7 phosphor for multidimensional anticounterfeiting

在镧系掺杂的LaCaAl3O7荧光粉中实现机械-上转换-下转换-余辉多模态发光并用于多维度防伪

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The tunable excitation patterns and emission modes associated with luminescence materials, such as downshifting luminescence (DSL), upconversion luminescence (UCL), and mechanoluminescence (ML) play an important role in information encryption and anticounterfeiting. However, many reported luminescence materials usually show fixed excitation patterns and unimodal output, resulting in a low anticounterfeiting level. Therefore, developing luminescence materials with multitemporal, variation excitation patterns and multiple emission modes remains a considerable challenge, particularly in a single matrix. This study reports a highly integrated multifunctional material (color-tunable (DSL: amaranth→blue), tunable excitation patterns (250–380 nm) and quadrimodal (DSL, UCL, persistent luminescence (PersL), and ML)). The as-obtained versatile LaCaAl3O7:Eu2+/3+,Yb3+,Er3+ materials are suitable for obtaining elastomer films with the characteristics of water resistance, stretchability, and flexibility and synchronously offer multidimensional information encryptions and anticounterfeiting using common tools (ultraviolet light, near-infrared light, and pen). These results provide a unique insight into advanced multimodal anticounterfeiting.

摘要

发光材料的可调激发、发射模式(上、下转换发光)和机械发光在信息加密和防伪方面发挥着重要作用. 然而, 大多数报道的发光材料通常表现出固定的激发模式和单一的发射, 导致较低的防伪水平. 因此,开发多时态、变激发模式和多种发射模式(特别是在同一基质中)的发光材料仍然是一个重要的挑战. 本文报道了一种高度集成的多功能材料(颜色可调(下转换发光: 紫红色→蓝色), 激发模式可调(250–380 nm)和四模态(上转换、下转换、余辉和机械发光). 所制得的多功能La-CaAl3O7:Eu2+/3+,Yb3+,Er3+材料适用于合成弹性体薄膜, 该薄膜具有防水、伸缩、柔韧的特性, 利用常用工具(紫外线灯)和980 nm激光器可进行多维信息加密防伪. 这些结果为高级多模态防伪提供了独特的见解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang T, Zhu YF, Zhang JC, et al. Multistimuli-responsive display materials to encrypt differentiated information in bright and dark fields. Adv Funct Mater, 2019, 29: 1906068

    Article  CAS  Google Scholar 

  2. Li X, Xie Y, Song B, et al. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption. Angew Chem Int Ed, 2017, 56: 2689–2693

    Article  CAS  Google Scholar 

  3. Ji X, Wu RT, Long L, et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater, 2018, 30: 1705480

    Article  CAS  Google Scholar 

  4. Ding M, Dong B, Lu Y, et al. Energy manipulation in lanthanide-doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting. Adv Mater, 2020, 32: 2002121

    Article  CAS  Google Scholar 

  5. Sun Z, Yang J, Huai L, et al. Spy must be spotted: A multistimuliresponsive luminescent material for dynamic multimodal anti-counterfeiting and encryption. ACS Appl Mater Interfaces, 2018, 10: 21451–21457

    Article  CAS  Google Scholar 

  6. Zhao Q, Xu W, Sun H, et al. Tunable electrochromic luminescence of iridium(III) complexes for information self-encryption and anticounterfeiting. Adv Opt Mater, 2016, 4: 1167–1173

    Article  CAS  Google Scholar 

  7. Sun T, Xu B, Chen B, et al. Anti-counterfeiting patterns encrypted with multi-mode luminescent nanotaggants. Nanoscale, 2017, 9: 2701–2705

    Article  CAS  Google Scholar 

  8. Wang J, Ma J, Zhang J, et al. Advanced dynamic photoluminescent material for dynamic anticounterfeiting and encryption. ACS Appl Mater Interfaces, 2019, 11: 35871–35878

    Article  CAS  Google Scholar 

  9. Pei P, Wei R, Wang B, et al. An advanced tunable multimodal luminescent La4GeO8:Eu2+,Er3+ phosphor for multicolor anticounterfeiting. Adv Funct Mater, 2021, 31: 2102479

    Article  CAS  Google Scholar 

  10. Pei P, DuanMu P, Wang B, et al. An advanced color tunable persistent luminescent NaCa2GeO4F:Tb3+ phosphor for multicolor anti-counterfeiting. Dalton Trans, 2021, 50: 3193–3200

    Article  CAS  Google Scholar 

  11. Xu X, Wang J, Yan B. Facile fabrication of luminescent Eu(III) functionalized HOF hydrogel film with multifunctionailities: Quinolones fluorescent sensor and anticounterfeiting platform. Adv Funct Mater, 2021, 31: 2103321

    Article  CAS  Google Scholar 

  12. Suo H, Zhu Q, Zhang X, et al. High-security anti-counterfeiting through upconversion luminescence. Mater Today Phys, 2021, 21: 100520

    Article  CAS  Google Scholar 

  13. Tian W, Zhang J, Yu J, et al. Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv Funct Mater, 2018, 28: 1703548

    Article  CAS  Google Scholar 

  14. Liu B, Li C, Yang P, et al. 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications. Adv Mater, 2017, 29: 1605434

    Article  CAS  Google Scholar 

  15. Ji L, Zhou J, Zhang J, et al. A multicolor persistent luminescent phosphor Sr2Ga2GeO7:Pr3+ for dynamic anticounterfeiting. J Am Ceram Soc, 2019, 102: 5465–5470

    Article  CAS  Google Scholar 

  16. Singh AK, Singh S, Gupta BK. Highly efficient, chemically stable, and UV/blue-light-excitable biluminescent security ink to combat counterfeiting. ACS Appl Mater Interfaces, 2018, 10: 44570–44575

    Article  CAS  Google Scholar 

  17. Liu R, Zhang W, Li G, et al. Excitation wavelength tunable white light emission in vacancy-ordered double perovskite. Chem Commun, 2021, 57: 10943–10946

    Article  CAS  Google Scholar 

  18. Chen D, Chen Y, Lu H, et al. A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem, 2014, 53: 8638–8645

    Article  CAS  Google Scholar 

  19. Liu J, Zhuang Y, Wang L, et al. Achieving multicolor long-lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps. ACS Appl Mater Interfaces, 2018, 10: 1802–1809

    Article  CAS  Google Scholar 

  20. Liu J, Rijckaert H, Zeng M, et al. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv Funct Mater, 2018, 28: 1707365

    Article  CAS  Google Scholar 

  21. Zeng Z, Huang B, Wang X, et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anticounterfeiting. Adv Mater, 2020, 32: 2004506

    Article  CAS  Google Scholar 

  22. Tian S, Zhang H, Yang X, et al. A dynamic three-path authenticating model for anti-counterfeiting in a single host of CaAl2Si2O8. Chem Eng J, 2021, 412: 128695

    Article  CAS  Google Scholar 

  23. Gao D, Gao J, Gao F, et al. Quintuple-mode dynamic anti-counterfeiting using multi-mode persistent phosphors. J Mater Chem C, 2021, 9: 16634–16644

    Article  CAS  Google Scholar 

  24. Zhang X, Zhao J, Chen B, et al. Tuning multimode luminescence in lanthanide(III) and manganese(II) Co-doped CaZnOS crystals. Adv Opt Mater, 2020, 8: 2000274

    Article  CAS  Google Scholar 

  25. News Release: DNP Achieves Global First with Application of Mechanoluminescent Printing, http://www.dnp.co.jp/eng/news/10111427_2501.html (accessed: April 2018)

  26. Wu C, Zeng S, Wang Z, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv Funct Mater, 2018, 28: 1803168

    Article  CAS  Google Scholar 

  27. Tian B, Wang Z, Smith AT, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing. Nano Energy, 2021, 83: 105860

    Article  CAS  Google Scholar 

  28. Wang Y, Seto T, Ishigaki K, et al. Pressure-driven Eu2+-doped BaLi2-Al2Si2N6: A new color tunable narrow-band emission phosphor for spectroscopy and pressure sensor applications. Adv Funct Mater, 2020, 30: 2001384

    Article  CAS  Google Scholar 

  29. Zhuang Y, Xie RJ. Mechanoluminescence rebrightening the prospects of stress sensing: A review. Adv Mater, 2021, 33: 2005925

    Article  CAS  Google Scholar 

  30. SW McKeever. Thermoluminescence of Solids. Cambridge: Cambridge University Press, 1985.

    Book  Google Scholar 

  31. Xia Z, Zhuang J, Liao L. Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes. Inorg Chem, 2012, 51: 7202–7209

    Article  CAS  Google Scholar 

  32. Chae KW, Park TR, Cheon CI, et al. The enhancement of luminescence in Co-doped cubic Eu2O3 using Li+ and Al3+ ions. J Lumin, 2011, 131: 2597–2605

    Article  CAS  Google Scholar 

  33. Dong C, Zhang Y, Duan J, et al. Synthesis and luminescence properties of single-phase Ca2P2O7:Eu2+, Eu3+ phosphor with tunable red/blue emission. J Mater Sci-Mater Electron, 2019, 30: 16384–16394

    Article  CAS  Google Scholar 

  34. Ding J, You H, Wang Y, et al. Site occupation and energy transfer of Ce3+-activated lithium nitridosilicate Li2SrSi2N4 with broad-yellow-light-emitting property and excellent thermal stability. J Mater Chem C, 2018, 6: 3435–3444

    Article  CAS  Google Scholar 

  35. Liu Z, Zhao L, Chen W, et al. Multiple anti-counterfeiting realized in NaBaScSi2O7 with a single activator of Eu2+. J Mater Chem C, 2018, 6: 11137–11143

    Article  CAS  Google Scholar 

  36. Wang W, Sun Z, He X, et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: A living example of a NaLuGeO4:Bi3+,Eu3+ phosphor. J Mater Chem C, 2017, 5: 4310–4318

    Article  CAS  Google Scholar 

  37. Wang Y, Feng P, Ding SS, et al. A promising route for developing yellow long persistent luminescence and mechanoluminescence in CaGa2O4:Pr3+,Li+. Inorg Chem Front, 2021, 8: 3748–3759

    Article  CAS  Google Scholar 

  38. Wang C, Jin Y, Lv Y, et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+,Ho3+ and photostimulable luminescence for optical information storage. J Mater Chem C, 2018, 6: 6058–6067

    Article  CAS  Google Scholar 

  39. Liu W, Zhang W, Liu R, et al. Up-conversion of lanthanide ions and down-conversion defect luminescence in BaGdF5:Yb,Er/Tm for application in anti-counterfeiting. New J Chem, 2021, 45: 17377–17383

    Article  CAS  Google Scholar 

  40. Dong H, Sun LD, Wang YF, et al. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc, 2015, 137: 6569–6576

    Article  CAS  Google Scholar 

  41. Liu Y, Ai K, Lu L. Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. Nanoscale, 2011, 3: 4804–4810

    Article  CAS  Google Scholar 

  42. Mofokeng SJ, Noto LL, Kroon RE, et al. Up-conversion luminescence and energy transfer mechanism in ZnTiO3:Er3+,Yb3+ phosphor. J Lumin, 2020, 223: 117192

    Article  CAS  Google Scholar 

  43. Yao W, Tian Q, Liu J, et al. Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4:Yb3+,Tm3+/Er3+/Eu3+ plates for security applications. J Mater Chem C, 2016, 4: 6327–6335

    Article  CAS  Google Scholar 

  44. Pollnau M, Gamelin DR, Lüthi SR, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B, 2000, 61: 3337–3346

    Article  CAS  Google Scholar 

  45. Yuan J, Yang Y, Yang X, et al. Regulating the trap distribution to achieve high-contrast mechanoluminescence with an extended saturation threshold through co-doping Nd3+ into CaZnOS:Bi3+,Li+. J Mater Chem C, 2021, 9: 7689–7696

    Article  CAS  Google Scholar 

  46. Li Y, Koskin IP, Ma Z, et al. Defect induced photoluminescence and triboluminescence in layered CaLaAl3O7. Dalton Trans, 2020, 49: 3942–3945

    Article  CAS  Google Scholar 

  47. Ma Z, Zhou J, Zhang J, et al. Mechanics-induced triple-mode anti-counterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence. Mater Horiz, 2019, 6: 2003–2008

    Article  CAS  Google Scholar 

  48. Pang R, Li C, Shi L, et al. A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+. J Phys Chem Solids, 2009, 70: 303–306

    Article  CAS  Google Scholar 

  49. Xu M, Wang L, Liu L, et al. Influence of Gd3+ doping on the luminescent of Sr2P2O7:Eu3+ orange-red phosphors. J Lumin, 2014, 146: 475–479

    Article  CAS  Google Scholar 

  50. Wong MC, Chen L, Bai G, et al. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Adv Mater, 2017, 29: 1701945

    Article  CAS  Google Scholar 

  51. Wang X, Zhang H, Yu R, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv Mater, 2015, 27: 2324–2331

    Article  CAS  Google Scholar 

  52. Jeong SM, Song S, Seo HJ, et al. Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile. Adv Sustain Syst, 2017, 1: 1700126

    Article  CAS  Google Scholar 

  53. Chen C, Zhuang Y, Li X, et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials. Adv Funct Mater, 2021, 31: 2101567

    Article  CAS  Google Scholar 

  54. Shi C, Shen X, Zhu Y, et al. Excitation wavelength-dependent dualmode luminescence emission for dynamic multicolor anti-counterfeiting. ACS Appl Mater Interfaces, 2019, 11: 18548–18554

    Article  CAS  Google Scholar 

  55. Wang Z, Pei P, Bai D, et al. Multicolor luminescence and triple-mode emission of simple CaTiO3:Pr3+,Er3+ particles for advanced anti-counterfeiting. Inorg Chem Front, 2020, 7: 2506–2514

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871122 and 21431002) and the Fundamental Research Funds for the Central Universities (lzujbky-2021-kb17).

Author information

Authors and Affiliations

Authors

Contributions

Pei P designed the experiments, and wrote the first draft of the paper. Bai Y was responsible for the characterization of experimental data and guiding data analysis. Su J and Yang Y checked the grammar and format. Liu W directed the experimental design, paper writing, and revision.

Corresponding author

Correspondence to Weisheng Liu  (刘伟生).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Pengxiang Pei is a PhD student at Lanzhou University. He received his bachelor degree at Qinghai Normal Uiversity in 2014 and master degree from Lanzhou Jiaotong University in 2019. His research mainly focuses on the rare-earth ions-activated long persistent phosphors and luminescent materials for anticounterfeiting.

Weisheng Liu is a professor at the College of Chemistry and Chemical Engineering, Lanzhou University. His research mainly focuses on rare-earth luminescent materials, functional complexes, fluorescent probes and detection, rubber additives.

Supplementary information

40843_2022_2042_MOESM1_ESM.pdf

Achieving mechano-upconversion-downshifting-afterglow multimodal luminescence in a lanthanide-doped LaCaAl3O7 phosphor for multidimensional anticounterfeiting

Supplementary material, approximately 4.01 MB.

Supplementary material, approximately 2.10 MB.

Supplementary material, approximately 3.73 MB.

Supplementary material, approximately 692 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, P., Bai, Y., Su, J. et al. Achieving mechano-upconversion-downshifting-afterglow multimodal luminescence in a lanthanide-doped LaCaAl3O7 phosphor for multidimensional anticounterfeiting. Sci. China Mater. 65, 2809–2817 (2022). https://doi.org/10.1007/s40843-022-2042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2042-7

Keywords

Navigation