Skip to main content
Log in

Stimulus-responsive polymers for safe batteries and smart electronics

用于高安全性电池和智能电子产品的刺激响应聚合物材料

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Stimulus-responsive energy storage devices, which can respond to external stimuli, such as heat, pH, moisture, pressure, or electric field, have recently attracted intensive attention, aiming at the ever-increasing demand for safe batteries and smart electronics. The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces, including hydrogen bonds and electrostatic interactions in response to external stimuli, accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity. Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures, many new concepts of regulating the polymer structures upon applications of stimuli have already been developed. In this review, we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios, with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance. Finally, we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.

摘要

随着人们对高安全性电池和智能电子产品的需求日益增长, 能够对诸如热、 pH值、 湿度、 压力或电场等外部刺激作出响应的刺激响应能量存储装置引起了广泛关注. 最典型的刺激响应材料是聚合物, 对于外界刺激它可以通过形成和破坏包括氢键和静电相互作用在内的二次作用力来实现其构型变化, 进而产生电导率和疏水性等内在性质的改变. 由于电池内部结构组成的复杂性和兼容性等问题, 刺激响应功能在可充电电池中的应用还处于起步阶段, 但许多针对外部刺激来调节聚合物结构的新概念已经出现. 本文综述了近年来聚合物材料在储能装置的热防护和智能化方面的研究进展, 重点介绍了聚合物材料在外界刺激下的结构转变及其对电池性能的影响. 最后, 本文展望了用于储能装置的刺激响应聚合物材料目前的局限性以及未来的发展方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928–935

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  3. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater, 2016, 1: 16013

    Article  CAS  Google Scholar 

  4. Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 2011, 4: 2682

    Article  CAS  Google Scholar 

  5. Whittingham MS. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271–4302

    Article  CAS  Google Scholar 

  6. Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci, 2014, 7: 513–537

    Article  CAS  Google Scholar 

  7. Gao L, Tang B, Jiang H, et al. Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv Sustain Syst, 2021, 6: 2100389

    Article  CAS  Google Scholar 

  8. Geng Z, Lu J, Li Q, et al. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Mater, 2019, 23: 646–652

    Article  Google Scholar 

  9. Wang Y, Zhong WH. Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. ChemElectroChem, 2015, 2: 22–36

    Article  CAS  Google Scholar 

  10. Wang Q, Ping P, Sun J. Catastrophe analysis of cylindrical lithium ion battery. Nonlinear Dyn, 2010, 61: 763–772

    Article  Google Scholar 

  11. Kelly JC, Gupta R, Roberts ME. Responsive electrolytes that inhibit electrochemical energy conversion at elevated temperatures. J Mater Chem A, 2015, 3: 4026–4034

    Article  CAS  Google Scholar 

  12. Kelly JC, Degrood NL, Roberts ME. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes. Chem Commun, 2015, 51: 5448–5451

    Article  CAS  Google Scholar 

  13. Zhu Y, Batchelor R, Lowe AB, et al. Design of thermoresponsive polymers with aqueous LCST, UCST, or both: Modification of a reactive poly(2-vinyl-4,4-dimethylazlactone) scaffold. Macromolecules, 2016, 49: 672–680

    Article  CAS  Google Scholar 

  14. Roy D, Brooks WLA, Sumerlin BS. New directions in thermoresponsive polymers. Chem Soc Rev, 2013, 42: 7214–7243

    Article  CAS  Google Scholar 

  15. Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev, 2008, 37: 2512–2529

    Article  CAS  Google Scholar 

  16. Yan X, Wang F, Zheng B, et al. Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev, 2012, 41: 6042

    Article  CAS  Google Scholar 

  17. Alarcon CDLH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev, 2005, 34: 276–285

    Article  CAS  Google Scholar 

  18. Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev, 2013, 42: 7468–7483

    Article  CAS  Google Scholar 

  19. Galaev IY, Mattiasson B. ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol, 1999, 17: 335–340

    Article  CAS  Google Scholar 

  20. Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater, 2010, 9: 101–113

    Article  CAS  Google Scholar 

  21. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci, 2010, 35: 278–301

    Article  CAS  Google Scholar 

  22. Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17: 261–267

    Article  CAS  Google Scholar 

  23. Chen YS, Yoon SJ, Frey W, et al. Dynamic contrast-enhanced photo-acoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat Commun, 2017, 8: 15782

    Article  CAS  Google Scholar 

  24. Zhao Y, Thorkelsson K, Mastroianni AJ, et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat Mater, 2009, 8: 979–985

    Article  CAS  Google Scholar 

  25. Fang Z, Hu X, Yu D. Integrated photo-responsive batteries for solar energy harnessing: Recent advances, challenges, and opportunities. ChemPlusChem, 2020, 85: 600–612

    Article  CAS  Google Scholar 

  26. Yu X, Cheng H, Zhang M, et al. Graphene-based smart materials. Nat Rev Mater, 2017, 2: 17046

    Article  CAS  Google Scholar 

  27. Kocak G, Tuncer C, Bütün V. pH-responsive polymers. Polym Chem, 2017, 8: 144–176

    Article  CAS  Google Scholar 

  28. Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release, 2008, 126: 187–204

    Article  CAS  Google Scholar 

  29. Ye M, Cheng H, Gao J, et al. A respiration-detective graphene oxide/lithium battery. J Mater Chem A, 2016, 4: 19154–19159

    Article  CAS  Google Scholar 

  30. Fang Z, Feng J, Fu X, et al. Humidity and pressure dual-responsive metal-water batteries enabled by three-in-one all-polymer cathodes for smart self-powered systems. ACS Appl Mater Interfaces, 2020, 12: 23853–23859

    Article  CAS  Google Scholar 

  31. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliver Rev, 2006, 58: 1655–1670

    Article  CAS  Google Scholar 

  32. Gil E, Hudson S. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci, 2004, 29: 1173–1222

    Article  CAS  Google Scholar 

  33. Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem, 2019, 5: 2326–2352

    Article  CAS  Google Scholar 

  34. Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol, 2019, 14: 705–711

    Article  CAS  Google Scholar 

  35. Bajpai AK, Shukla SK, Bhanu S, et al. Responsive polymers in controlled drug delivery. Prog Polym Sci, 2008, 33: 1088–1118

    Article  CAS  Google Scholar 

  36. Yang H, Leow WR, Chen X. Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv Mater, 2018, 30: 1704347

    Article  CAS  Google Scholar 

  37. Li L, Xu C, Chang R, et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater, 2021, 40: 329–336

    Article  Google Scholar 

  38. Wu H, Zhuo D, Kong D, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun, 2014, 5: 5193

    Article  CAS  Google Scholar 

  39. Balakrishnan PG, Ramesh R, Kumar TP. Safety mechanisms in lithiumion batteries. J Power Sources, 2006, 155: 401–414

    Article  CAS  Google Scholar 

  40. Zeng Z, Wu B, Xiao L, et al. Safer lithium ion batteries based on nonflammable electrolyte. J Power Sources, 2015, 279: 6–12

    Article  CAS  Google Scholar 

  41. Chen YS, Hu CC, Li YY. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries. J Power Sources, 2008, 181: 69–73

    Article  CAS  Google Scholar 

  42. Jung YS, Cavanagh AS, Gedvilas L, et al. Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mater, 2012, 2: 1022–1027

    Article  CAS  Google Scholar 

  43. Yang H, Liu Z, Chandran BK, et al. Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition. Adv Mater, 2015, 27: 5593–5598

    Article  CAS  Google Scholar 

  44. Kelly JC, Pepin M, Huber DL, et al. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes. Adv Mater, 2012, 24: 886–889

    Article  CAS  Google Scholar 

  45. Zhang H, Ma S, Zhang Q, et al. Thermoreversible and self-protective sol-gel transition electrolytes for all-printed transferable micro-supercapacitors as safer micro-energy storage devices. ACS Appl Mater Interfaces, 2020, 12: 41819–41831

    Article  CAS  Google Scholar 

  46. Shen J, Han K, Martin EJ, et al. Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices. J Mater Chem A, 2014, 2: 18204–18207

    Article  CAS  Google Scholar 

  47. Dou Y, Pan T, Zhou A, et al. Reversible thermally-responsive electrochemical energy storage based on smart LDH@P(NIPAM-co-SPMA) films. Chem Commun, 2013, 49: 8462–8464

    Article  CAS  Google Scholar 

  48. Zhao J, Sonigara KK, Li J, et al. A smart flexible zinc battery with cooling recovery ability. Angew Chem Int Ed, 2017, 56: 7871–7875

    Article  CAS  Google Scholar 

  49. Shi Y, Ha H, Al-Sudani A, et al. Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv Mater, 2016, 28: 7921–7928

    Article  CAS  Google Scholar 

  50. Chen Z, Hsu PC, Lopez J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat Energy, 2016, 1: 15009

    Article  CAS  Google Scholar 

  51. Zhou Q, Dong S, Lv Z, et al. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv Energy Mater, 2020, 10: 1903441

    Article  CAS  Google Scholar 

  52. Hyung YE, Vissers DR, Amine K. Flame-retardant additives for lithium-ion batteries. J Power Sources, 2003, 119–121: 383–387

    Article  CAS  Google Scholar 

  53. Yang H, Guo C, Chen J, et al. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew Chem Int Ed, 2019, 58: 791–795

    Article  CAS  Google Scholar 

  54. Shim EG, Nam TH, Kim JG, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J Power Sources, 2007, 172: 919–924

    Article  CAS  Google Scholar 

  55. Granzow A. Flame retardation by phosphorus compounds. Acc Chem Res, 1978, 11: 177–183

    Article  CAS  Google Scholar 

  56. Liu K, Liu W, Qiu Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci Adv, 2017, 3: e1601978

    Article  CAS  Google Scholar 

  57. Tonge SR, Tighe BJ. Responsive hydrophobically associating polymers: A review of structure and properties. Adv Drug Deliver Rev, 2001, 53: 109–122

    Article  CAS  Google Scholar 

  58. Philippova OE, Hourdet D, Audebert R, et al. pH-responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules, 1997, 30: 8278–8285

    Article  CAS  Google Scholar 

  59. Aoki T, Kawashima M, Katono H, et al. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules, 1994, 27: 947–952

    Article  CAS  Google Scholar 

  60. Torres-Lugo M, Peppas NA. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules, 1999, 32: 6646–6651

    Article  CAS  Google Scholar 

  61. Murthy N, Robichaud JR, Tirrell DA, et al. The design and synthesis of polymers for eukaryotic membrane disruption. J Control Release, 1999, 61: 137–143

    Article  CAS  Google Scholar 

  62. Li B, Nie Z, Vijayakumar M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat Commun, 2015, 6: 6303

    Article  CAS  Google Scholar 

  63. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy, 2016, 1: 16039

    Article  CAS  Google Scholar 

  64. Zhang J, Jiang G, Xu P, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci, 2018, 11: 2010–2015

    Article  CAS  Google Scholar 

  65. Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 2019, 3: 1289–1300

    Article  CAS  Google Scholar 

  66. Kaveevivitchai W, Manthiram A. High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. J Mater Chem A, 2016, 4: 18737–18741

    Article  CAS  Google Scholar 

  67. Qiu H, Du X, Zhao J, et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun, 2019, 10: 5374

    Article  CAS  Google Scholar 

  68. Wang F, Tseng J, Liu Z, et al. A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv Mater, 2020, 32: 2000287

    Article  CAS  Google Scholar 

  69. Katoh T, Inda Y, Nakajima K, et al. Lithium/water battery with lithium ion conducting glass-ceramics electrolyte. J Power Sources, 2011, 196: 6877–6880

    Article  CAS  Google Scholar 

  70. Liu Q, Yan Z, Wang E, et al. A high-specific-energy magnesium/water battery for full-depth ocean application. Int J Hydrogen Energy, 2017, 42: 23045–23053

    Article  CAS  Google Scholar 

  71. Xie P, Rong MZ, Zhang MQ. Moisture battery formed by direct contact of magnesium with foamed polyaniline. Angew Chem Int Ed, 2016, 55: 1805–1809

    Article  CAS  Google Scholar 

  72. Wang X, Gao J, Cheng Z, et al. A responsive battery with controlled energy release. Angew Chem Int Ed, 2016, 55: 14643–14647

    Article  CAS  Google Scholar 

  73. Deka J, Saha K, Gogoi R, et al. Fabrication of pressure-responsive energy device from nanofluidic vanadium pentoxide and polymeric hydrogel. ACS Appl Electron Mater, 2021, 3: 277–284

    Article  CAS  Google Scholar 

  74. Argun AA, Aubert PH, Thompson BC, et al. Multicolored electrochromism in polymers: Structures and devices. Chem Mater, 2004, 16: 4401–4412

    Article  CAS  Google Scholar 

  75. Kobayashi T, Yoneyama H, Tamura H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J Electroanal Chem Interfacial Electrochem, 1984, 177: 281–291

    Article  CAS  Google Scholar 

  76. DeLongchamp DM, Hammond PT. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater, 2004, 16: 4799–4805

    Article  CAS  Google Scholar 

  77. Yang P, Sun P, Chai Z, et al. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew Chem, 2014, 126: 12129–12133

    Article  Google Scholar 

  78. Zhang P, Zhu F, Wang F, et al. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv Mater, 2017, 29: 1604491

    Article  CAS  Google Scholar 

  79. Wei H, Yan X, Wu S, et al. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: Electrochromic behavior and electrochemical energy storage. J Phys Chem C, 2012, 116: 25052–25064

    Article  CAS  Google Scholar 

  80. Tian Y, Cong S, Su W, et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett, 2014, 14: 2150–2156

    Article  CAS  Google Scholar 

  81. Chen X, Lin H, Deng J, et al. Electrochromic fiber-shaped supercapacitors. Adv Mater, 2014, 26: 8126–8132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2017YFE0127600), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22010600), the National Natural Science Foundation of China (21975271), the Key-Area Research and Development Program of Guangdong Province (2020B090919005), and Shandong Natural Science Foundation (ZR2020ZD07 and ZR2021QB106). Zhao J particularly acknowledges the financial support from the Youth Innovation Promotion Association of CAS (2019214) and Shandong Energy Institute (SEI I202127).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Niu J and Chen Z wrote the manuscript; Zhao J and Cui G participated in the discussion and revised the manuscript.

Corresponding authors

Correspondence to Zheng Chen  (陈政) or Guanglei Cui  (崔光磊).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jiaping Niu received his Bachelor’s degree from the Northwestern Polytechnical University in 2021. He is a PhD candidate at Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. His research interests mainly focus on functional batteries and polymer electrolytes.

Zheng Chen is an assistant professor at Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. He received his PhD degree in physical chemistry from Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2018. His research interests mainly focus on dual ion batteries and electrolytes.

Jingwen Zhao is an associate professor at Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. He is also a member of the Youth Promotion Association, Chinese Academy of Sciences. He received his PhD degree in chemistry from Beijing University of Chemical Technology in 2015. He is mainly engaged in the research of low-cost multivalent metal batteries and solid electrolytes.

Guanglei Cui is a professor at Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. He received his PhD degree in organic chemistry from the Institute of Chemistry, Chinese Academy of Sciences in 2005. Currently, he is the director of the Energy Storage Technology Research Institute of Qingdao. His research interests mainly focus on solid-state batteries, deep-sea power supply systems and photoelectric conversion devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Chen, Z., Zhao, J. et al. Stimulus-responsive polymers for safe batteries and smart electronics. Sci. China Mater. 65, 2060–2071 (2022). https://doi.org/10.1007/s40843-022-2033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2033-2

Keywords

Navigation