Skip to main content
Log in

High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions

高熵钙钛矿氧化物: 一种应用于氮气还原的通用材料

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Despite the intense research efforts directed to electrocatalytic nitrogen reduction reaction (eNRR), the NH3 yield and selectivity are still not up to the standard of practical application. Here, high-entropy perovskite oxides with composition Bax(FeCoNiZrY)0.2O3−δ (Bx(FCNZY)0.2 (x = 0.9, 1) are reported as eNRR catalysts. The eNRR activity of high-entropy perovskite oxide is enhanced by changing the nonstoichiometric metal elements at the A-site, thus generating additional oxygen vacancies. The NH3 yield and Faraday efficiency for B0.9(FCNZY)0.2 are 1.51 and 1.95 times higher than those for B(FCNZY)0.2, respectively. The d-band center theory is used to theoretically predict the catalytically active center at the B-site, and as a result, nickel was identified as the catalytic site. The free energy values of the intermediate states in the optimal distal pathway show that the third protonation step (*NNH2 → *NNH3) is the rate-determining step and that the increase in oxygen vacancies in the high-entropy perovskite contributes to nitrogen adsorption and reduction. This work provides a framework for applying high-entropy structures with active site diversity for electrocatalytic nitrogen fixation.

摘要

在过去的几年里, 电催化氮还原反应(eNRR)吸引了大量的研究兴趣. 尽管如此, NH3的产量和选择性仍然没有达到实际应用的标准. 本论文报道了成分为Bax(FeCoNiZrY)0.2O3−δ (Bx(FCNZY)0.2 (x = 0.9, 1)的高熵钙钛矿作为eNRR催化剂的新材料研究平台. 通过改变A位金属元素的非化学计量比, 使材料产生更高密度的氧缺陷, 进而提升氮气还原性能. B0.9(FCNZY)0.2的NH3产率和法拉第效率是B(FCNZY)0.2的1.51 和1.95倍. 理论上, 利用d-带中心理论预测了B-位点的催化活性中心, 并确定了镍元素为催化位点. 最佳远端反应途径中的中间状态的自由 能值表明, 第三个质子化步骤(*NNH2 → * NNH3)是决定速率的步骤, 高熵钙钛矿氧化物中氧空位的增加对氮的吸附和还原都有贡献. 这项工作为具有多个活性位点的高熵结构应用于电催化固氮提供了一个新的研究框架.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li P, Jin Z, Fang Z, et al. A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew Chem Int Ed, 2020, 59: 22610–22616

    Article  CAS  Google Scholar 

  2. Stüeken EE, Kipp MA, Koehler MC, et al. The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci Rev, 2016, 160: 220–239

    Article  CAS  Google Scholar 

  3. Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today, 2019, 27: 69–90

    Article  CAS  Google Scholar 

  4. Nazemi M, Panikkanvalappil SR, El-Sayed MA. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323

    Article  CAS  Google Scholar 

  5. Yesudoss DK, Lee G, Shanmugam S. Strong catalyst support interactions in defect-rich γ-Mo2N nanoparticles loaded 2D-h-BN hybrid for highly selective nitrogen reduction reaction. Appl Catal B-Environ, 2021, 287: 119952

    Article  CAS  Google Scholar 

  6. Zhang L, Liang J, Wang Y, et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew Chem Int Ed, 2021, 60: 25263–25268

    Article  CAS  Google Scholar 

  7. Li S, Wang Y, Liang J, et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater Today Phys, 2021, 18: 100396

    Article  CAS  Google Scholar 

  8. Fan X, Xie L, Liang J, et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res, 2022, 15: 3050–3055

    Article  CAS  Google Scholar 

  9. Lai F, Feng J, Ye X, et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J Mater Chem A, 2020, 8: 1652–1659

    Article  CAS  Google Scholar 

  10. Li Z, Ma Z, Liang J, et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater Today Phys, 2022, 22: 100586

    Article  CAS  Google Scholar 

  11. Wen G, Liang J, Liu Q, et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res, 2022, 15: 972–977

    Article  CAS  Google Scholar 

  12. Xu T, Liang J, Wang Y, et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res, 2022, 15: 1039–1046

    Article  CAS  Google Scholar 

  13. Guo W, Zhang K, Liang Z, et al. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem Soc Rev, 2019, 48: 5658–5716

    Article  CAS  Google Scholar 

  14. Lai F, Chen N, Ye X, et al. Refining energy levels in ReS2 nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production. Adv Funct Mater, 2020, 30: 1907376

    Article  CAS  Google Scholar 

  15. Zhao Y, Li F, Li W, et al. Identification of M−NH2−NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded few catalyst. Angew Chem Int Ed, 2021, 60: 20331–20341

    Article  CAS  Google Scholar 

  16. Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater, 2018, 8: 1800369

    Article  CAS  Google Scholar 

  17. Suryanto BHR, Du HL, Wang D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal, 2019, 2: 290–296

    Article  CAS  Google Scholar 

  18. Chu K, Liu F, Zhu J, et al. A general strategy to boost electrocatalytic nitrogen reduction on perovskite oxides via the oxygen vacancies derived from A-site deficiency. Adv Energy Mater, 2021, 11: 2003799

    Article  CAS  Google Scholar 

  19. Liu Y, Kong X, Guo X, et al. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catal, 2020, 10: 1077–1085

    Article  CAS  Google Scholar 

  20. Lai F, Zong W, He G, et al. N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew Chem Int Ed, 2020, 59: 13320–13327

    Article  CAS  Google Scholar 

  21. Sim HYF, Chen JRT, Koh CSL, et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44 % efficiency in the ambient nitrogen reduction reaction. Angew Chem Int Ed, 2020, 59: 16997–17003

    Article  CAS  Google Scholar 

  22. Yang Y, Wang SQ, Wen H, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew Chem Int Ed, 2019, 58: 15362–15366

    Article  CAS  Google Scholar 

  23. Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun, 2019, 10: 341

    Article  CAS  Google Scholar 

  24. Xiong X, Shen D, Zhang Q, et al. Achieving high discharged energy density in PVDF-based nanocomposites loaded with fine Ba0.6Sr0.4TiO3 nanofibers. Compos Commun, 2021, 25: 100682

    Article  Google Scholar 

  25. Li C, Ma D, Mou S, et al. Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J Energy Chem, 2020, 50: 402–408

    Article  Google Scholar 

  26. Yu J, Li C, Li B, et al. A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media. Chem Commun, 2019, 55: 6401–6404

    Article  CAS  Google Scholar 

  27. Hu X, Sun Y, Guo S, et al. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Appl Catal B-Environ, 2021, 280: 119419

    Article  CAS  Google Scholar 

  28. Zhang S, Duan G, Qiao L, et al. Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions. Ind Eng Chem Res, 2019, 58: 8935–8939

    Article  CAS  Google Scholar 

  29. Ohrelius M, Guo H, Xian H, et al. Electrochemical synthesis of ammonia based on a perovskite LaCrO3 catalyst. ChemCatChem, 2020, 12: 731–735

    Article  CAS  Google Scholar 

  30. Zhang H, Xu Y, Lu M, et al. Perovskite oxides for cathodic electrocatalysis of energy-related gases: From O2 to CO2 and N2. Adv Funct Mater, 2021, 31: 2101872

    Article  CAS  Google Scholar 

  31. Xu Y, Xu X, Cao N, et al. Perovskite ceramic oxide as an efficient electrocatalyst for nitrogen fixation. Int J Hydrogen Energy, 2021, 46: 10293–10302

    Article  CAS  Google Scholar 

  32. Chu K, Ras MD, Rao D, et al. Tailoring the d-band center of double-perovskite LaCoxNi1−xO3 nanorods for high activity in artificial N2 fixation. ACS Appl Mater Interfaces, 2021, 13: 13347–13353

    Article  CAS  Google Scholar 

  33. Yeh JW, Lin SJ, Chin TS, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mat Trans A, 2004, 35: 2533–2536

    Article  Google Scholar 

  34. Wang T, Chen H, Yang Z, et al. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J Am Chem Soc, 2020, 142: 4550–4554

    Article  CAS  Google Scholar 

  35. Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep, 2018, 8: 8609

    Article  CAS  Google Scholar 

  36. Jin T, Sang X, Unocic RR, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater, 2018, 30: 1707512

    Article  CAS  Google Scholar 

  37. Zhang RZ, Gucci F, Zhu H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg Chem, 2018, 57: 13027–13033

    Article  CAS  Google Scholar 

  38. Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep, 2016, 6: 37946

    Article  CAS  Google Scholar 

  39. Chen H, Jie K, Jafta CJ, et al. An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction. Appl Catal B-Environ, 2020, 276: 119155

    Article  CAS  Google Scholar 

  40. Qiao H, Wang X, Dong Q, et al. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021, 86: 106029

    Article  CAS  Google Scholar 

  41. Wang T, Fan J, Do-Thanh CL, et al. Perovskite oxide-halide solid solutions: A platform for electrocatalysts. Angew Chem Int Ed, 2021, 60: 9953–9958

    Article  CAS  Google Scholar 

  42. Ji Q, Bi L, Zhang J, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ Sci, 2020, 13: 1408–1428

    Article  CAS  Google Scholar 

  43. Jia Z, Gao Z, Kou K, et al. Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3−y/RGO for high efficiency microwave absorption. Compos Commun, 2020, 20: 100344

    Article  Google Scholar 

  44. Zhu Y, Chen ZG, Zhou W, et al. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. ChemSusChem, 2013, 6: 2249–2254

    Article  CAS  Google Scholar 

  45. Tong Y, Wu J, Chen P, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J Am Chem Soc, 2018, 140: 11165–11169

    Article  CAS  Google Scholar 

  46. Ren Y, Yu C, Tan X, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ Sci, 2021, 14: 1176–1193

    Article  CAS  Google Scholar 

  47. Zhu D, Zhang L, Ruther RE, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat Mater, 2013, 12: 836–841

    Article  CAS  Google Scholar 

  48. Watt GW, Chrisp JD. Spectrophotometric method for determination of hydrazine. Anal Chem, 1952, 24: 2006–2008

    Article  CAS  Google Scholar 

  49. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  50. Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B, 1993, 48: 13115–13118

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  52. Ivanov BA, Tartakovskaya EV. Stabilization of long-range magnetic order in 2D easy-plane antiferromagnets. Phys Rev Lett, 1996, 77: 386–389

    Article  CAS  Google Scholar 

  53. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  54. Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104

    Article  CAS  Google Scholar 

  55. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J Am Chem Soc, 2017, 139: 12480–12487

    Article  CAS  Google Scholar 

  56. Ren R, Wang Z, Xu C, et al. Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J Mater Chem A, 2019, 7: 18365–18372

    Article  CAS  Google Scholar 

  57. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A, 1976, 32: 751–767

    Article  Google Scholar 

  58. She S, Zhu Y, Wu X, et al. Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation. Adv Funct Mater, 2021, 31: 2111091

    Google Scholar 

  59. Zhu Y, Zhou W, Yu J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater, 2016, 28: 1691–1697

    Article  CAS  Google Scholar 

  60. Cui X, O’Hayre R, Pylypenko S, et al. Fabrication of a mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Trans, 2017, 46: 13903–13911

    Article  CAS  Google Scholar 

  61. Cong Y, Tang Q, Wang X, et al. Silver-intermediated perovskite La0.9FeO3−δ toward high-performance cathode catalysts for nonaqueous lithium-oxygen batteries. ACS Catal, 2019, 9: 11743–11752

    Article  CAS  Google Scholar 

  62. Gu J, Li Q, Zheng S, et al. Ni75Cu25O polyhedron material derived from nickel-copper oxalate as high-performance electrocatalyst for glucose oxidation. Compos Commun, 2022, 29: 100999

    Article  Google Scholar 

  63. Cheng G, Kou T, Zhang J, et al. O 2−2 /O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy, 2017, 38: 155–166

    Article  CAS  Google Scholar 

  64. Dai J, Zhu Y, Tahini HA, et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat Commun, 2020, 11: 5657

    Article  CAS  Google Scholar 

  65. Wang J, Huang B, Ji Y, et al. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv Mater, 2020, 32: 1907112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52161135302, 21674019, and 51801075), the Research Foundation Flanders (G0F2322N), Shanghai Scientific and Technological Innovation Project (18JC1410600), and the Program of the Shanghai Academic Research Leader (17XD1400100). Hofkens J and Martens JA gratefully acknowledge the financial support from the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), the Long-term Structural Funding (Methusalem CASAS2, Meth/15/04) and Interne Fondsen KU Leuven through project C3/20/067. De Ras M greatfully acknowledges the support from the Research Foundation-Flanders (FWO) in the form of a doctoral fellowship (1SA3321N). Chu K gratefully acknowledges the financial support from China Scholarship Council in the form of a visiting Ph.D. Student (File No. 202106790090). Theoretical work was carried out at the LvLiang Cloud Computing Center of China, and the calculations were performed on a TianHe-2 system. We also thank the characterizations supported by the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

Author information

Authors and Affiliations

Authors

Contributions

Chu K, Zhang L, Zhang N, Hofkens J, Lai F, and Liu T came up with the concept. Chu K, Qin J, Zhu H, De Ras M, and Xiong L proposed the topic. Chu K, Zhu H, and Xiong L collected the data. Chu K, Qin J, De Ras M, Wang C, Zhang N, and Martens JA analyzed the data. Chu K wrote the original draft. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Feili Lai  (赖飞立) or Tianxi Liu  (刘天西).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Kaibin Chu received his BE and MS at Jiangnan University. He is currently a PhD student in Tianxi Liu’s group at the School of Chemical and Material Engineering, Jiangnan University. His research focuses on the design of inorganic perovskite materials for electrocatalytic ammonia synthesis.

Feili Lai received his BS degree from Donghua University (2014), master’s degree from Fudan University (2017), and PhD degree from Max Planck Institute of Colloids and Interfaces/Universität Potsdam (2019). He is now a research fellow of the Department of Chemistry, KU Leuven. His current interests include machine learning in materials science, and the design and synthesis of low-dimensional solids for energy storage and conversion applications.

Tianxi Liu received his BS degree from Henan University (1992) and PhD degree from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (1998). He is currently a full professor at Jiangnan University. His main research interests include polymer nanocomposites, organic/inorganic hybrid materials, nanofibers and their composites, advanced energy materials and energy conversion and storage.

Supplementary information

Supporting data are available in the online version of the paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, K., Qin, J., Zhu, H. et al. High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Sci. China Mater. 65, 2711–2720 (2022). https://doi.org/10.1007/s40843-022-2021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2021-y

Keywords

Navigation